[1] |
Alabd A, Cheng H, Ahmad M, Wu X, Peng L, Wang L, Yang S, Bai S, Ni J, Teng Y. 2023. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiology, 192 (3):1982-1996.
doi: 10.1093/plphys/kiad168
pmid: 36932703
|
[2] |
Albertini M V, Carcouet E, Pailly O, Gambotti C, Luro F, Berti L. 2006. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. Journal of Agricultural and Food Chemistry, 54 (21):8335-8339.
|
[3] |
Amato A, Cavallini E, Walker A R, Pezzotti M, Bliek M, Quattrocchio F, Koes R, Ruperti B, Bertini E, Zenoni S, Tornielli G B. 2019. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal, 99:1220-1241.
doi: 10.1111/tpj.14419
pmid: 31125454
|
[4] |
Aprile A, Federici C, Close T J, de Bellis L, Cattivelli L, Roose M L. 2011. Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Functional & Integrative Genomics, 11 (4):551-563.
|
[5] |
Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K. 2012. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics, 287:663-678.
doi: 10.1007/s00438-012-0707-7
pmid: 22806345
|
[6] |
Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse J M, Gambale F, Thomine S, Wege S. 2011. Anion channels/transporters in plants:from molecular bases to regulatory networks. Annual Review of Plant Biology, 62:25-51.
doi: 10.1146/annurev-arplant-042110-103741
pmid: 21275645
|
[7] |
Bordonaba J G, Terry L A. 2010. Manipulating the taste-related composition of strawberry fruits(Fragaria × ananassa) from different cultivars using deficit irrigation. Food Chemistry, 122:1020-1026.
|
[8] |
Carvalho G Jr, Schaffert R E, Malosetti M, Viana J H, Menezes C B, Silva L A, Guimaraes C T, Coelho A M, Kochian L V, van Eeuwijk F A, Magalhaes J V. 2015. Back to acid soil fields:the citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils. G3:Genes-Genomes-Genetics, 6 (2):475-484.
|
[9] |
Centeno D C, Osorio S, Nunes-Nesi A, Bertolo A L, Carneiro R T, Araújo W L, Steinhauser M C, Michalska J, Rohrmann J, Geigenberger P, Oliver S N, Stitt M, Carrari F, Rose J K, Fernie A R. 2011. Malate plays a crucial role in starch metabolism,ripening,and soluble solid content of tomato fruit and affects postharvest softening. the Plant Cell, 23 (1):162-184.
doi: 10.1105/tpc.109.072231
pmid: 21239646
|
[10] |
Cercos M, Soler G, Iglesias D, Gadea J, Forment J, Talon M. 2006. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Molecular Biology, 62:513-527.
pmid: 16897468
|
[11] |
Chen Jiajing, Liu Yuan, Wu Yanuo, Xu Juan, Zhang Hongyan. 2023. Sensory fuzzy modeling and sugar and acid analysis based evaluation of fruit quality difference in different‘Ehime Kashi 28’samples. Acta Horticulturae Sinica, 50 (11):2466-2476. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-0978
|
|
陈嘉景, 刘园, 吴雅诺, 徐娟, 张红艳. 2023. 基于感官模糊建模和糖酸分析评价‘红美人’杂柑的品质. 园艺学报, 50 (11):2466-2476.
doi: 10.16420/j.issn.0513-353x.2022-0978
|
[12] |
Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, Lev S, Sa'ar U, Davidovitz-Rikanati R, Baranes N, Bar E, Wolf D, Petreikov M, Shen S, Ben-Dor S, Rogachev I, Aharoni A, Ast T, Schuldiner M, Belausov E, Eshed R, Ophir R, Sherman A, Frei B, Neuhaus H E, Xu Y, Fei Z, Giovannoni J, Lewinsohn E, Tadmor Y, Paris H S, Katzir N, Burger Y, Schaffer A A. 2014. The pH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications, 5:4026.
doi: 10.1038/ncomms5026
pmid: 24898284
|
[13] |
de Angeli A, Baetz U, Francisco R, Zhang J, Chaves M M, Regalado A. 2013a. The vacuolar channel VvALMT 9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta, 238 (2):283-291.
|
[14] |
de Angeli A, Zhang J, Meyer S, Martinoia E. 2013b. AtALMT 9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature Communications, 4:1804.
|
[15] |
Du H, Ryan P R, Liu C, Li H, Hu W, Yan W, Huang Y, He W, Luo B, Zhang X, Gao S, Zhou S, Zhang S. 2021. ZmMATE 6 from maize encodes a citrate transporter that enhances aluminum tolerance in transgenic Arabidopsis thaliana. Plant Science, 311:111016.
|
[16] |
Eisenach C, Baetz U, Huck N V, Zhang J, de Angeli A, Beckers G J M, Martinoia E. 2017. ABA-induced stomatal closure involves ALMT4,a phosphorylation-dependent vacuolar anion channel of Arabidopsis. The Plant Cell, 29 (10):2552-2569.
|
[17] |
Eisenach C, Baetz U, Martinoia E. 2014. Vacuolar proton pumping:more than the sum of its parts? Trends in Plant Science, 19 (6):344-346.
|
[18] |
Emmerlich V, Linka N, Reinhold T, Hurth M A, Traub M, Martinoia E, Neuhaus H E. 2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proceedings of the National Academy of Sciences of the United States of America, 100 (19):11122-11126.
|
[19] |
Esteban M A, Villannueva M J, Lissarrgue J R. 1999. Effect of irrigation on changes in berry composition of tempreanillo during maturation,sugars,organic acids and mineral elements. American Journal of Enology and Viticulture, 50:418-434.
|
[20] |
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64 (6):1451-1469.
doi: 10.1093/jxb/ert035
pmid: 23408829
|
[21] |
Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C. 2010. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation:involvement in regulating peach fruit acidity. Physiologia Plantarum, 114 (2):259-270.
|
[22] |
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer A H, Di Sansebastiano G P, Koes R, Quattrocchio F M. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports, 6 (1):32-43.
doi: 10.1016/j.celrep.2013.12.009
pmid: 24388746
|
[23] |
Fontes N, Gerós H N, Delrot S. 2011. Grape berry vacuole:a complex and heterogeneous membrane system specialized in the accumulation of solutes. American Journal of Enology and Viticulture, 62:270-278.
|
[24] |
Frei B, Eisenach C, Martinoia E, Hussein S, Chen X Z, Arrivault S, Neuhaus H E. 2018. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. Journal of Biological Chemistry, 293 (11):4180-4190.
|
[25] |
Fu B L, Wang W Q, Li X, Qi T H, Shen Q F, Li K F, Liu X F, Li S J, Allan A C, Yin X R. 2023. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor,AcNAC1. Plant Biotechnology Journal, 21 (8):1695-1706.
|
[26] |
Furuichi T, Sasaki T, Tsuchiya Y, Ryan P R, Delhaize E, Yamamoto Y. 2010. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1,the aluminum-activated malate transport protein of wheat. the Plant Journal, 64 (1):47-55.
doi: 10.1111/j.1365-313X.2010.04309.x
pmid: 20663086
|
[27] |
Gao M Y, Liang J, Li H, Zhong R, Ni D A. 2021. Loss-of-function of vacuolar-type H+-pyrophosphatase gene lead to reduce in stomatal aperture and density. IOP Conference Series Earth and Environmental Science, 657:012024.
|
[28] |
Guo Jing, Liao Manyu, Jin Yan, Ma Xiaochuan, Zhang Fen, Lu Xiaopeng, Deng Ziniu, Sheng Ling. 2023. Functional analysis of transcription factor CsbHLH 3 in regulating citric acid metabolism of citrus fruit. Acta Horticulturae Sinica, 50 (5):947-958. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-0205
|
|
郭静, 廖满余, 金燕, 马小川, 张芬, 卢晓鹏, 邓子牛, 盛玲. 2023. 柑橘转录因子CsbHLH3调控柠檬酸代谢的功能解析. 园艺学报, 50 (5):947-958.
doi: 10.16420/j.issn.0513-353x.2022-0205
|
[29] |
Hafke J B, Hafke Y, Smith J A, Lüttge U, Thiel G. 2003. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. The Plant Journal, 35 (1):116-128.
|
[30] |
Hoekenga O A, Maron L G, Piñeros M A, Cançado G M, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian L V. 2006. AtALMT1,which encodes a malate transporter,is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103 (25):9738-9743.
|
[31] |
Hu D G, Li Y Y, Zhang Q Y, Li M, Sun C H, Yu J Q, Hao Y J. 2017. The R2R3-MYB transcription factor MdMYB 73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal, 91 (3):443-454.
|
[32] |
Hu D G, Sun C H, Ma Q J, You C X, Cheng L, Hao Y J. 2016. MdMYB 1 Regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 170 (3):1315-1330.
|
[33] |
Hurth M A, Suh S J, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus H E. 2005. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiology, 137 (3):901-910.
|
[34] |
Hussain S B, Shi C Y, Guo L X, Du W, Bai Y X, Kamran H M, Fernie A R, Liu Y Z. 2020. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. Journal of Experimental Botany, 71 (19):5935-5947.
doi: 10.1093/jxb/eraa298
pmid: 32589717
|
[35] |
Hussain S B, Shi C Y, Guo L X, Kamran H M, Sadka A, Liu Y Z. 2017. Recent advances in the regulation of citric acid metabolism in citrus fruit. Critical Reviews in Plant Sciences, 4:241-256.
|
[36] |
Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. 2018. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes:MdSAUR37,MdPP2CH and MdALMTII. The Plant Journal, 95:427-443.
|
[37] |
Jia D, Wu P, Shen F, Li W, Zheng X, Wang Y, Yuan Y, Zhang X, Han Z. 2021. Genetic variation in the promoter of an R2R3-MYB transcription factor determines fruit malate content in apple(Malus domestica Borkh.). Plant Physiology, 186:549-568.
|
[38] |
Jiang Y T, Tang R J, Zhang Y J, Xue H W, Ferjani A, Luan S, Lin W H. 2020. Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist, 225 (4):1606-1617.
|
[39] |
Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E. 2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal, 52 (6):1169-1180.
|
[40] |
Lamikanra O, Inyang I D, Leong S. 1995. Distribution and effect of grape maturity on organic acid content of red muscadine grapes. Journal of Agricultural and Food Chemistry, 43:3026-3028.
|
[41] |
Li C, Dougherty L, Coluccio A E, Meng D, El-Sharkawy I, Borejsza-Wysocka E, Liang D, Piñeros M A, Xu K, Cheng L. 2020. Apple ALMT 9 requires a conserved C-terminal domain for malate transport underlying fruit acidity. Plant Physiology, 182 (2):992-1006.
|
[42] |
Li S J, Yin X R, Xie X L, Allan A C, Ge H, Shen S L, Chen K S. 2016a. The Citrus transcription factor,CitERF13,regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump,CitVHA-c4. Scientific Reports, 6:20151.
|
[43] |
Li Y, Provenzano S, Bliek M, Spelt C, Appelhagen I, Machado de Faria L, Verweij W, Schubert A, Sagasser M, Seidel T, Weisshaar B, Koes R, Quattrocchio F. 2016b. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. New Phytologist, 211 (3):1092-1107.
|
[44] |
Liao L, Zhang W, Zhang B, Fang T, Wang X F, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng C H, Ma B, Zheng B, You C X, Hu D G, Espley R, Lin-Wang K, Yao J L, Allan A C, Khan A, Korban S S, Fei Z, Ming R, Hao Y J, Li L, Han Y. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 14 (9):1454-1471.
doi: 10.1016/j.molp.2021.05.018
pmid: 34022440
|
[45] |
Ligaba A, Dreyer I, Margaryan A, Schneider D J, Kochian L, Piñeros M. 2013. Functional,structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter,TaALMT1. The Plant Journal, 76:766-780.
|
[46] |
Ligaba A, Katsuhara M, Ryan P R, Shibasaka M, Matsumoto H. 2006. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology, 142 (3):1294-1303.
|
[47] |
Ligaba A, Kochian L, Piñeros M. 2009. Phosphorylation at S 384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. the Plant Journal, 60 (3):411-423.
|
[48] |
Ligaba A, Maron L, Shaff J, Kochian L, Piñeros M. 2012. Maize ZmALMT 2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell and Environment, 35 (7):1185-200.
|
[49] |
Lin Q, Li S, Dong W, Feng C, Yin X, Xu C, Sun C, Chen K. 2015. Involvement of CitCHX and CitDIC in developmental-related and postharvest-hot-air driven citrate degradation in citrus fruits. PLoS ONE, 10 (3):e0119410.
|
[50] |
Liu M Y, Lou H Q, Chen W W, Piñeros M A, Xu J M, Fan W, Kochian L V, Zheng S J, Yang J L. 2018. Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. Plant Cell and Environment, 41 (4):809-822.
|
[51] |
Liu R, Li B, Qin G, Zhang Z, Tian S. 2017. Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato (Solanum lycopersicum). Frontiers in Plant Science, 8:186.
|
[52] |
Liu J, Magalhaes J V, Shaff J, Kochian L V. 2009. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal, 57 (3):389-399.
|
[53] |
Liu S, Li Y, Fang H, Huang B, Zhao C, Sun C, Li S, Chen K. 2022. Genome-wide identification and expression analysis of MATE gene family in citrus fruit (Citrus clementina). Genomics, 114 (5):110446.
|
[54] |
Liu J, Zhou M. 2018. The ALMT gene family performs multiple functions in plants. Agronomy Journal, 8 (2):20.
|
[55] |
Lu Xiaopeng, Li Feifei, Xie Shenxi. 2018. Citrate accumulation in citrus fruit:a molecular perspective. Journal of Fruit Science, 35 (1):118-127. (in Chinese)
|
|
卢晓鹏, 李菲菲, 谢深喜. 2018. 柑橘果实柠檬酸积累调控基因研究进展. 果树学报, 35 (1):118-127.
|
[56] |
Lu X P, Liu Y Z, Zhou G F, Wei Q J, Hu H J, Peng S A. 2011. Identification of organic acid-related genes and their expression profiles in two pear (Pyrus pyrifolia) cultivars with difference in predominant acid type at fruit ripening stage. Scientia Horticulturae, 129 (4):680-687.
|
[57] |
Luu K, Rajagopalan N, Ching J C H, Loewen M C, Loewen M E. 2019. The malate-activated ALMT 12 anion channel in the grass Brachypodium distachyon is co-activated by Ca2+/calmodulin. Journal of Biological Chemistry, 294 (15):6142-6156.
|
[58] |
Ma B, Liao L, Fang T, Peng Q, Ogutu C, Zhou H, Ma F, Han Y. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnology Journal, 17 (3):674-686.
|
[59] |
Ma B, Liao L, Zheng H, Chen J, Wu B, Ogutu C, Li S, Korban S S, Han Y. 2015. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. Plant Genome, 8:1-14.
|
[60] |
Ma Q J, Sun M H, Lu J, Hu D G, Kang H, You C X, Hao Y J. 2020. Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple. Journal of Experimental Botany, 71 (12):3437-3449.
|
[61] |
Maeshima M. 2000. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta, 1465 (1-2):37-51.
doi: 10.1016/s0005-2736(00)00130-9
pmid: 10748246
|
[62] |
Martinoia E. 2018. Vacuolar transporters-companions on a longtime journey. Plant Physiology, 176 (2):1384-1407.
doi: 10.1104/pp.17.01481
pmid: 29295940
|
[63] |
Martinoia E, Maeshima M, Neuhaus H E. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 58 (1):83-102.
doi: 10.1093/jxb/erl183
pmid: 17110589
|
[64] |
Medeiros D B, Barros K A, Barros J A S, Omena-Garcia R P, Arrivault S, Sanglard L M V P, Detmann K C, Silva W B, Daloso D M, DaMatta F M, Nunes-Nesi A, Fernie A R, Araújo W L. 2017. Impaired malate and fumarate accumulation due to the mutation of the tonoplast dicarboxylate transporter has little effects on stomatal behavior. Plant Physiology, 175 (3):1068-1081.
doi: 10.1104/pp.17.00971
pmid: 28899959
|
[65] |
Meyer S, Scholz-Starke J, de Angeli A, Kovermann P, Burla B, Gambale F, Martinoia E. 2011. Malate transport by the vacuolar AtALMT 6 channel in guard cells is subject to multiple regulation. The Plant Journal, 67 (2):247-257.
|
[66] |
Mignard P, Beguería S, Reig G, Font i Forcada C, Moreno M A. 2021. Genetic origin and climate determine fruit quality and antioxidant traits on apple(Malus × domestica Borkh). Scientia Horticulturae, 285:110142.
|
[67] |
Mohammed S A, Nishio S, Takahashi H, Shiratake K, Ikeda H, Kanahama K, Kanayama Y. 2012. Role of vacuolar H+-inorganic pyrophosphatase in tomato fruit development. Journal of Experimental Botany, 63 (15):5613-5621.
doi: 10.1093/jxb/ers213
pmid: 22915738
|
[68] |
Osorio S, Vallarino J G, Szecowka M, Ufaz S, Tzin V, Angelovici R, Galili G, Fernie A R. 2013. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid,metabolism,and transitory starch accumulation. Plant Physiology, 161 (2):628-643.
doi: 10.1104/pp.112.211094
pmid: 23250627
|
[69] |
Piñeros M A, Cançado G M, Maron L G, Lyi S M, Menossi M, Kochian L V. 2008. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses:the case of ZmALMT1-an anion-selective transporter. The Plant Journal, 53 (2):352-367.
|
[70] |
Peng W, Wu W, Peng J, Li J, Lin Y, Wang Y, Tian J, Sun L, Liang C, Liao H. 2018. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. Journal of Integrative Plant Biology, 60 (3):216-231.
|
[71] |
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, Ren H, Liu P, Zhu L, Su J, Ma F, Li M, Ma B. 2023. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. The Plant Journal,doi: 10.1111/tpj.16314.
|
[72] |
Qiu W, Wang N, Dai J, Wang T, Kochian L V, Liu J, Zuo Y. 2019. AhFRDL1-mediated citrate secretion contributes to adaptation to iron deficiency and aluminum stress in peanuts. Journal of Experimental Botany, 70 (10):2873-2886.
doi: 10.1093/jxb/erz089
pmid: 30825369
|
[73] |
Rentsch D, Martinoia E. 1991. Citrate transport into barley mesophyll vacuoles-comparison with malate-uptake activity. Planta, 184 (4):532-537.
doi: 10.1007/BF00197903
pmid: 24194244
|
[74] |
Regalado A, Pierri C L, Bitetto M, Laera V L, Pimentel C, Francisco R, Passarinho J, Chaves M M, Agrimi G. 2013. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries. Planta, 237 (3):693-703.
doi: 10.1007/s00425-012-1786-8
pmid: 23096487
|
[75] |
Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, Kubo Y, Mori I C, Higashiizumi E, Galis I, Yamamoto Y. 2016. Two Members of the Aluminum-activated malate transporter family,SlALMT4and SlALMT5,are expressed during fruit development,and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum). Plant and Cell Physiology, 57 (11):2367-2379.
|
[76] |
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal, 37 (5):645-653.
|
[77] |
Shi C Y, Hussain S B, Yang H, Bai Y X, Khan M A, Liu Y Z. 2019. CsPH8,a P-type proton pump gene,plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Science, 289:110288.
|
[78] |
Shi Caiyun, Liu Li, Wei Zhifeng, Gao Dengtao, Liu Yongzhong. 2022. Research progress of proton pumps and their regulation in organic acid accumulation in horticultural plants. Acta Horticulturae Sinica, 49 (12):2611-2621. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0936
|
|
石彩云, 刘丽, 魏志峰, 高登涛, 刘永忠. 2022. 园艺植物质子泵及其对有机酸积累调控的研究进展. 园艺学报, 49 (12):2611-2621.
doi: 10.16420/j.issn.0513-353x.2021-0936
|
[79] |
Shiratake K, Martinoia E. 2007. Transporters in fruit vacuoles. Plant Biotechnology, 24:127-133.
|
[80] |
Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E. 2006. Vacuolar citrate/H+ symporter of citrus juice cells. Planta, 224:472-480.
|
[81] |
Shohei Y. 1984. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars,organic acids,phenolic compounds and amino acids. Plant and Cell Physiology, 25:151-166.
|
[82] |
Strazzer P, Spelt C E, Li S, Bliek M, Federici C T, Roose M L, Koes R, Quattrocchio F M. 2019. Hyperacidification of citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications, 10 (1):744.
doi: 10.1038/s41467-019-08516-3
pmid: 30808865
|
[83] |
Sweetman C, Deluc L G, Cramer G R, Ford C M, Soole K L. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 70:1329-1344.
doi: 10.1016/j.phytochem.2009.08.006
pmid: 19762054
|
[84] |
Terrier N, Sauvage F X, Ageorges A, Romieu C. 2001. Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta, 213 (1):20-28.
pmid: 11523652
|
[85] |
Umer M J, Bin Safdar L, Gebremeskel H, Zhao S, Yuan P, Zhu H, Kaseb M O, Anees M, Lu X, He N, Gong C, Liu W. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research, 7 (1):193.
doi: 10.1038/s41438-020-00416-8
pmid: 33328462
|
[86] |
Wan Jiaxin, Dai Tao, Luo Guoliang, Wu Hongxia, Xu Wentian, Zheng Bin, Wang Songbiao, Luo Cong, Liang Qingzhi. 2023. Genetic analysis of sugar and acid quality traits in mango hybrid population. Acta Horticulturae Sinica, 50 (6):1203-1214. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-0416
|
|
万嘉欣, 代涛, 骆国亮, 李丽, 武红霞, 许文天, 郑斌, 王松标, 罗聪, 梁清志. 2023. 杧果杂交群体糖酸品质性状的遗传分析. 园艺学报, 50 (6):1203-1214.
doi: 10.16420/j.issn.0513-353x.2022-0416
|
[87] |
Wang J H, Gu K D, Zhang Q Y, Yu J Q, Wang C K, You C X, Cheng L L, Hu D G. 2023. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter9 via the WRKY31-ERF72 network. New Phytologist, 239 (3):1014-1034.
|
[88] |
Wang Z, Liu Y, Cui W, Gong L, He Y, Zhang Q, Meng X, Yang Z, You J. 2022. Characterization of GmMATE 13 in its contribution of citrate efflux and aluminum resistance in soybeans. Frontiers in Plant Science, 13:1027560.
|
[89] |
Wei L, Mao W, Jia M, Xing S, Ali U, Zhao Y, Chen Y, Cao M, Dai Z, Zhang K, Dou Z, Jia W, Li B. 2018. FaMYB44.2,a transcriptional repressor,negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany, 69 (20):4805-4820.
|
[90] |
Wu B H, Quilot B, Génard M, Kervella J, Li S H. 2005. Changes in sugar and organic acid concentrations during fruit maturation in peaches,P. davidiana and hybrids as analyzed by principal component analysis. Scientia Horticulturae, 103:429-439.
|
[91] |
Wu W F, Chen F X. 2016. Malate transportation and accumulation in fruit cell. Endocytobiosis and Cell Research, 27:107-112.
|
[92] |
Xu K, Wang A, Brown S. 2012. Genetic characterization of the Ma locus with pH and titratable acidity in apple. Molecular Breeding, 30:899-912.
|
[93] |
Xu L, Qiao X, Zhang M, Zhang S. 2018. Genome-wide analysis of aluminum-activated malate transporter family genes in six Rosaceae species,and expression analysis and functional characterization on malate accumulation in Chinese white pear. Plant Science, 274:451-465.
|
[94] |
Yang J, Zhang J, Niu X Q, Zheng X L, Chen X, Zheng G H, Wu J C. 2021. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat. PLoS ONE, 16 (4):e0238873.
|
[95] |
Yang M, Hou G, Peng Y, Wang L, Liu X, Jiang Y, He C, She M, Zhao M, Chen Q, Li M, Zhang Y, Lin Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. 2023. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. Frontiers in Plant Science, 14:1138865.
|
[96] |
Yao Y X, Dong Q L, You C X, Zhai H, Hao Y J. 2011b. Expression analysis and functional characterization of apple MdVHP1gene reveals its involvement in Na+,malate and soluble sugar accumulation. Plant Physiology Biochemistry, 49 (10):1201-1208.
|
[97] |
Yao Y X, Li M, Zhai H, You C X, Hao Y J. 2011a. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of Plant Physiology, 168 (5):474-480.
|
[98] |
Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, Yang T, Li H, Lu Y, Giovannoni J J, Zhang Y, Ye Z. 2017. An Indel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell, 29 (9):2249-2268.
|
[99] |
Yu J Q, Gu K D, Sun C H, Zhang Q Y, Wang J H, Ma F F, You C X, Hu D G, Hao Y J. 2021. The apple bHLH transcription factor MdbHLH 3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal, 9 (2):285-299.
|
[100] |
Zhang C M, Geng Y Q, Liu H X, Wu M J, Bi J X, Wang Z T, Dong X C, Li X G. 2023. Low-acidity aluminum-dependent malate transporter 4 genotype determines malate content in cultivated jujube. Plant Physiology, 191 (1):414-427.
|
[101] |
Zhang L, Ma B, Wang C, Chen X, Ruan Y L, Yuan Y, Ma F, Li M. 2022a. MdWRKY 126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase(MdMDH5). Plant Physiology, 188 (4):2059-2072.
|
[102] |
Zhang L, Wang C, Jia R, Yang N, Jin L, Zhu L, Ma B, Yao Y X, Ma F, Li M. 2022b. Malate metabolism mediated by the cytoplasmic malate dehydrogenase gene MdcyMDH affects sucrose synthesis in apple fruit. Horticulture Research, 9:uhac194.
|
[103] |
Zhang Q Y, Gu K D, Cheng L, Wang J H, Yu J Q, Wang X F, You C X, Hu D G, Hao Y J. 2020. BTB-TAZ domain protein MdBT 2 modulates malate accumulation and vacuolar acidification in response to nitrate. Plant Physiology, 183 (2):750-764.
|
[104] |
Zhang Wenhao, Zhang Hui, Liu Yuting, Wang Yan, Zhang Yingying, Wang Xinman, Wang Quanhua, Zhu Weimin, Yang Xuedong. 2024. Preliminary transcriptome analysis in two tomato fruits materials with different sugar content. Acta Horticulturae Sinica, 51 (2):281-294. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2023-0761
|
|
张文昊, 张辉, 刘雨婷, 王艳, 张迎迎, 王馨曼, 王全华, 朱为民, 杨学东. 2024. 番茄含糖量不同的两个材料果实转录组初步分析. 园艺学报, 51 (2):281-294.
|
[105] |
Zhao Yong, Zhu Hongju, Yang Dongdong, Gong Chengsheng, Liu Wenge. 2022. Research progress of citric acid metabolism in the fruit. Acta Horticulturae Sinica, 49 (12):2579-2596. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0709
|
|
赵永, 朱红菊, 杨东东, 龚成胜, 刘文革. 2022. 果实柠檬酸代谢研究进展. 园艺学报, 49 (12):2579-2596.
doi: 10.16420/j.issn.0513-353x.2021-0709
|
[106] |
Zheng B, Zhao L, Jiang X, Cherono S, Liu J, Ogutu C, Ntini C, Zhang X, Han Y. 2021. Assessment of organic acid accumulation and its related genes in peach. Food Chemistry, 334:127567.
|
[107] |
Zheng L, Liao L, Duan C, Ma W, Peng Y, Yuan Y, Han Y, Ma F, Li M, Ma B. 2023. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. Plant Physiology, 192 (3):1877-1891.
|
[108] |
Zheng L, Ma W, Deng J, Peng Y, Tian R, Yuan Y, Li B, Ma F, Li M, Ma B. 2022. A MdMa13gene encoding tonoplast P3B-type ATPase regulates organic acid accumulation in apple. Scientia Horticulturae, 296:110916.
|
[109] |
Zhou Y, Neuhäuser B, Neumann G, Ludewig U. 2020. LaALMT 1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation. Plant Cell and Environment, 43 (7):1691-1706.
|