园艺学报 ›› 2026, Vol. 53 ›› Issue (1): 313-330.doi: 10.16420/j.issn.0513-353x.2025-0150
• 综述 • 上一篇
范永生1, 任艺2, 刘斯超3, 冯福东4, 乜兰春1, 王鑫鑫1,2,*(
)
收稿日期:2025-04-13
修回日期:2025-09-12
出版日期:2026-01-25
发布日期:2026-01-26
通讯作者:
基金资助:
FAN Yongsheng1, REN Yi2, LIU Sichao3, FENG Fudong4, NIE Lanchun1, WANG Xinxin1,2,*(
)
Received:2025-04-13
Revised:2025-09-12
Published:2026-01-25
Online:2026-01-26
摘要:
随着社会经济的发展和现代种植技术的进步,目前中国番茄的种植规模已经达到历史最高。植物生长调节剂因其高效、低毒、低成本的特点被广泛应用于番茄种植的各个阶段,然而,不规范使用甚至滥用植物生长调节剂严重影响了番茄的品质。本文中综述了植物生长调节剂在番茄中的应用及其作用机制,重点探讨了其在正常和胁迫条件下对番茄品质的影响,以期为植物生长调节剂的科学合理使用提供理论依据。
范永生, 任艺, 刘斯超, 冯福东, 乜兰春, 王鑫鑫. 植物生长调节剂在番茄生产中的应用及对果实品质的影响[J]. 园艺学报, 2026, 53(1): 313-330.
FAN Yongsheng, REN Yi, LIU Sichao, FENG Fudong, NIE Lanchun, WANG Xinxin. Application of Plant Growth Regulators in Tomato Production and Their Effects on Fruit Quality[J]. Acta Horticulturae Sinica, 2026, 53(1): 313-330.
| 分类 Classification | 代表性种类 Representative types | 最佳浓度 Optimal concentration | 应用时期 Application period | 使用方法 Application methods | 主要用途 Main application | 参考文献 References |
|---|---|---|---|---|---|---|
| 生长促进剂 Growth promoter | 氯吡脲 Forchlorfenuron,KT-30 | 0.015 mg · L-1 | 幼苗期 Seedling stage | 冲施 Fertigation | 促进番茄的生长和干物质的积累 Promote the growth of tomatoes and the accumulation of dry matter | 任士伟 等, |
| 复硝酚钠 Sodium nitrophenolate | 1.8%复硝酚钠水剂稀释2 000 ~ 2 400倍 | 花蕾期、幼果期 Flower bud stage,young fruit stage | 叶面喷施 Leaf spray application | 保花保果,提高产量35.1% ~ 37.1% Protect the flowers and fruits,increasing the yield by 35.1% to 37.1% | 薛珠政 等, | |
| 萘乙酸Naphthalene acetic Acid,NAA | 10 ~ 25 mg · kg-1 | 初花期 Early flowering period | 喷施 Spray application | 促进果实成熟,平均坐果率11.5% ~ 42.3%,平均单果质量增加3% ~ 9.7%,增产率5.3% ~ 13.9% Promote fruit maturation,with an average fruit setting rate of 11.5% to 42.3%,an average single fruit weight increase of 3% to 9.7%,and a yield increase of 5.3% to 13.9% | 夏春宝 等, | |
| 赤霉素Gibberellic acid,GA | 100 µmol · L-1 | 种子 Seed | 浸种 Soaking seeds | 促进种子萌发,幼苗发育 Promote seed germination and seedling development | 戴陶宇 等, | |
| 6-苄氨基嘌呤6-Benzylamino- purine,6-BA | 600 mg · L-1 | 生长期Growing period | 叶面喷施 Leaf spray application | 促进番茄幼苗发育,增加侧枝数量 Promote the development of tomato seedlings and increase the number of side branches | Ahmad et al., | |
| 生长促进剂 Growth promoter | 油菜素内酯Brassinolide,BR | 0.01 µmol · L-1 | 种子期 Seed stage | 浸种 Soaking seeds | 提高盐胁迫下种子萌发 Enhancing seed germination under salt stress | 杨文文 等, |
| 独脚金内酯Strigolactone,SL | - | 幼苗期 Seedling stage | 喷施 Spray application | 抑制顶端优势,调控侧枝生长 Inhibit apical dominance and regulate lateral branch growth | 孙倩,2020 | |
| 2,4-二氯苯氧乙酸2,4-D | 20 mg · kg-1 | 花期 Flowering period | 蘸施 Dipping application | 促进番茄生长、坐果率提升40% Promote tomato growth and increase the fruit setting rate by 40% | 马建华, | |
| 乙烯利Ethephon,CEPA | 40%乙烯利水剂稀释800 ~ 900倍液 | 幼果期 Young fruit stage | 喷施 Spray application | 加速成熟,提高产量16.5% ~ 17.1% Accelerate ripening and increase yield by 16.5% to 17.1% | 李维根和明旸, | |
| 水杨酸Salicylic acid,SA | 不超过0.58 mmol · L-1 | 幼苗期 Seedling stage | 叶面喷施 Leaf spray application | 促进番茄幼苗生长发育,根系干质量增加1.3%、根冠比增加1.9% Promote the growth and development of tomato seedlings,with an increase of 1.3% in root dry weight and 1.9% in root-to-shoot ratio | 罗静静 等, | |
| 胺鲜酯Diethyl aminoethyl hexanoate,DA-6 | 13.3 mg · kg-1 | 苗期、花蕾期 Seedling stage,bud stage | 喷施 Spray application | 增加产量8.8%,平均果实直径增加1.6%,平均单果质量增加7.6% Increase in production by 8.8%,average fruit diameter increased by 1.6%,average single fruit weight increased by 7.6% | 刘忠德, | |
| 噻苯隆Thidiazuron,TDZ | 2 mg · L-1 | 花期 Flowering period | 喷施 Spray application | 提升产量25%,同时显著提高可溶性糖、维生素C、番茄红素含量。TDZ残留量很低 Increase production by 25%,while significantly raising the levels of soluble sugar,vitamin C,and lycopene. The residue of TDZ is very low | 兰珊珊 等, | |
| 生长延缓剂 Growth retardant | 矮壮素Chlormequat chloride,CCC | 300 mg · L-1 | 苗期 Seedling stage | 喷施 Spray application | 抑制节间生长,降低株高,增强光合作用,提升可溶性固形物22.5%,有利于干物质积累 Suppressing internode growth,reducing plant height,enhancing photosynthesis,increasing soluble solid content by 22.5%,and promoting dry matter accumulation | 马亚男 等, |
| 多效唑Paclobutrazol,PP333 | 200 mg · L-1 | 种子 Seed | 浸种 Soaking seeds | 抑制营养生长、促进花芽分化,提高光合速率,增强抗逆性 Inhibit vegetative growth,promote flower bud differentiation,increase photosynthetic rate,and enhance stress resistance | 李华锋 等, | |
| 生长抑制剂 Growth inhibitor | 脱落酸Abscisic acid,ABA | 100 µmol · L-1 | 幼果期 Young fruit stage | 喷施 Spray application | 增加果实质量,抑制果实纵向生长,促进还原糖积累,抑制类胡萝卜素积累 Increase fruit quality,inhibit longitudinal growth of fruit,promote the accumulation of reducing sugars,and inhibit the accumulation of carotenoids | 刘浩然和汪俏梅, |
| 马来酰肼Maleic hydrazide,MH | 3 000 mg · L-1 | 幼苗期 Seedling stage | 叶面喷施 Leaf spray application | 抑制番茄顶芽和侧芽生长 Inhibit the growth of tomato apical and lateral buds | 李扬丹, | |
| 其他 Others | 褪黑素 Melatonin,MT | 100 ~ 200 µmol · L-1 | 果实膨大期 Fruit enlargement stage | 叶面喷施 Leaf spray application | 提升可溶性糖、可溶性蛋白质等的含量,降低可滴定酸、维生素C、氨基酸的水平 Increase the content of soluble sugars,soluble proteins,etc.,while reducing the levels of titratable acidity,vitamin C,and amino acids | 赵海亮 等, |
| 茉莉酸甲酯 Methyl jasmonate,MeJA | 100 µmol · L-1 | 果实绿熟期 Fruit ripening period | 喷施 Spray application | 改善果实醛类、醇类、酮类、酯类、烃类等挥发性风味品质 Improve the volatile flavor quality of aldehydes,alcohols,ketones,esters,hydrocarbons,etc | 马海云 等, |
表1 常见植物生长调节剂分类、及其主要用途和使用方法
Table 1 Classification of plant growth regulators commonly used in tomato production,and their main functions and application methods
| 分类 Classification | 代表性种类 Representative types | 最佳浓度 Optimal concentration | 应用时期 Application period | 使用方法 Application methods | 主要用途 Main application | 参考文献 References |
|---|---|---|---|---|---|---|
| 生长促进剂 Growth promoter | 氯吡脲 Forchlorfenuron,KT-30 | 0.015 mg · L-1 | 幼苗期 Seedling stage | 冲施 Fertigation | 促进番茄的生长和干物质的积累 Promote the growth of tomatoes and the accumulation of dry matter | 任士伟 等, |
| 复硝酚钠 Sodium nitrophenolate | 1.8%复硝酚钠水剂稀释2 000 ~ 2 400倍 | 花蕾期、幼果期 Flower bud stage,young fruit stage | 叶面喷施 Leaf spray application | 保花保果,提高产量35.1% ~ 37.1% Protect the flowers and fruits,increasing the yield by 35.1% to 37.1% | 薛珠政 等, | |
| 萘乙酸Naphthalene acetic Acid,NAA | 10 ~ 25 mg · kg-1 | 初花期 Early flowering period | 喷施 Spray application | 促进果实成熟,平均坐果率11.5% ~ 42.3%,平均单果质量增加3% ~ 9.7%,增产率5.3% ~ 13.9% Promote fruit maturation,with an average fruit setting rate of 11.5% to 42.3%,an average single fruit weight increase of 3% to 9.7%,and a yield increase of 5.3% to 13.9% | 夏春宝 等, | |
| 赤霉素Gibberellic acid,GA | 100 µmol · L-1 | 种子 Seed | 浸种 Soaking seeds | 促进种子萌发,幼苗发育 Promote seed germination and seedling development | 戴陶宇 等, | |
| 6-苄氨基嘌呤6-Benzylamino- purine,6-BA | 600 mg · L-1 | 生长期Growing period | 叶面喷施 Leaf spray application | 促进番茄幼苗发育,增加侧枝数量 Promote the development of tomato seedlings and increase the number of side branches | Ahmad et al., | |
| 生长促进剂 Growth promoter | 油菜素内酯Brassinolide,BR | 0.01 µmol · L-1 | 种子期 Seed stage | 浸种 Soaking seeds | 提高盐胁迫下种子萌发 Enhancing seed germination under salt stress | 杨文文 等, |
| 独脚金内酯Strigolactone,SL | - | 幼苗期 Seedling stage | 喷施 Spray application | 抑制顶端优势,调控侧枝生长 Inhibit apical dominance and regulate lateral branch growth | 孙倩,2020 | |
| 2,4-二氯苯氧乙酸2,4-D | 20 mg · kg-1 | 花期 Flowering period | 蘸施 Dipping application | 促进番茄生长、坐果率提升40% Promote tomato growth and increase the fruit setting rate by 40% | 马建华, | |
| 乙烯利Ethephon,CEPA | 40%乙烯利水剂稀释800 ~ 900倍液 | 幼果期 Young fruit stage | 喷施 Spray application | 加速成熟,提高产量16.5% ~ 17.1% Accelerate ripening and increase yield by 16.5% to 17.1% | 李维根和明旸, | |
| 水杨酸Salicylic acid,SA | 不超过0.58 mmol · L-1 | 幼苗期 Seedling stage | 叶面喷施 Leaf spray application | 促进番茄幼苗生长发育,根系干质量增加1.3%、根冠比增加1.9% Promote the growth and development of tomato seedlings,with an increase of 1.3% in root dry weight and 1.9% in root-to-shoot ratio | 罗静静 等, | |
| 胺鲜酯Diethyl aminoethyl hexanoate,DA-6 | 13.3 mg · kg-1 | 苗期、花蕾期 Seedling stage,bud stage | 喷施 Spray application | 增加产量8.8%,平均果实直径增加1.6%,平均单果质量增加7.6% Increase in production by 8.8%,average fruit diameter increased by 1.6%,average single fruit weight increased by 7.6% | 刘忠德, | |
| 噻苯隆Thidiazuron,TDZ | 2 mg · L-1 | 花期 Flowering period | 喷施 Spray application | 提升产量25%,同时显著提高可溶性糖、维生素C、番茄红素含量。TDZ残留量很低 Increase production by 25%,while significantly raising the levels of soluble sugar,vitamin C,and lycopene. The residue of TDZ is very low | 兰珊珊 等, | |
| 生长延缓剂 Growth retardant | 矮壮素Chlormequat chloride,CCC | 300 mg · L-1 | 苗期 Seedling stage | 喷施 Spray application | 抑制节间生长,降低株高,增强光合作用,提升可溶性固形物22.5%,有利于干物质积累 Suppressing internode growth,reducing plant height,enhancing photosynthesis,increasing soluble solid content by 22.5%,and promoting dry matter accumulation | 马亚男 等, |
| 多效唑Paclobutrazol,PP333 | 200 mg · L-1 | 种子 Seed | 浸种 Soaking seeds | 抑制营养生长、促进花芽分化,提高光合速率,增强抗逆性 Inhibit vegetative growth,promote flower bud differentiation,increase photosynthetic rate,and enhance stress resistance | 李华锋 等, | |
| 生长抑制剂 Growth inhibitor | 脱落酸Abscisic acid,ABA | 100 µmol · L-1 | 幼果期 Young fruit stage | 喷施 Spray application | 增加果实质量,抑制果实纵向生长,促进还原糖积累,抑制类胡萝卜素积累 Increase fruit quality,inhibit longitudinal growth of fruit,promote the accumulation of reducing sugars,and inhibit the accumulation of carotenoids | 刘浩然和汪俏梅, |
| 马来酰肼Maleic hydrazide,MH | 3 000 mg · L-1 | 幼苗期 Seedling stage | 叶面喷施 Leaf spray application | 抑制番茄顶芽和侧芽生长 Inhibit the growth of tomato apical and lateral buds | 李扬丹, | |
| 其他 Others | 褪黑素 Melatonin,MT | 100 ~ 200 µmol · L-1 | 果实膨大期 Fruit enlargement stage | 叶面喷施 Leaf spray application | 提升可溶性糖、可溶性蛋白质等的含量,降低可滴定酸、维生素C、氨基酸的水平 Increase the content of soluble sugars,soluble proteins,etc.,while reducing the levels of titratable acidity,vitamin C,and amino acids | 赵海亮 等, |
| 茉莉酸甲酯 Methyl jasmonate,MeJA | 100 µmol · L-1 | 果实绿熟期 Fruit ripening period | 喷施 Spray application | 改善果实醛类、醇类、酮类、酯类、烃类等挥发性风味品质 Improve the volatile flavor quality of aldehydes,alcohols,ketones,esters,hydrocarbons,etc | 马海云 等, |
| 植物生长调 节剂 Plant growth regulator | 重金 属 Heavy metal | 效果 Effect | 参考文献 Reference |
|---|---|---|---|
| 褪黑素Melatonin (MT) | 镍Ni | MT可恢复生长属性、提高光合效率、增强矿物稳态、减少氧化损伤,有效缓解镍诱导的植物毒性。在番茄幼苗中,其能提升次生代谢物含量,后者参与重金属螯合、抑制ROS形成,减轻镍对生长的抑制,提高幼苗耐受性 MT can restore growth attributes,improve photosynthetic efficiency,enhance mineral homeostasis,and reduce oxidative damage,effectively alleviating nickel-induced plant toxicity. In tomato seedlings,it can increase the content of secondary metabolites,which are involved in heavy metal chelation, inhibit the formation of ROS,mitigate nickel's inhibitory effects on growth,and improve seedling resilience | Jahan et al., |
| 铬Cr | Cr胁迫下,番茄植株形态、生理与生化特性下降,光合色素显著减少,活性氧(ROS)积累 Under Cr stress,the morphological physiological,and biochemical characteristics of tomato plants decline,chlorophyll pigments significantly reduce,and reactive oxygen species(ROS)accumulate | Raja et al., | |
| 铝Al | 铝胁迫致使番茄生理代谢改变,体内铝大量积累,生长发育受限,各器官DNA不同程度受损。外施150 μmol · L-1 MT,能提升番茄抗氧化酶活性、光合能力和根系活力,缓解根茎叶DNA损伤,降低体内铝含量,激活生理响应以抵御铝胁迫 Aluminum stress causes physiological and metabolic changes in tomatoes,leading to a significant accumulation of aluminum in the body,restricted growth and development, and varying degrees of DNA damage in different organs. Externally applying 150 μmol · L-1 MT can enhance the antioxidant enzyme activity,photosynthetic capacity,and root vitality of tomatoes,alleviate DNA damage in roots,stems,and leaves,reduce aluminum levels in the body,and activate physiological responses to withstand aluminum stress. | 张建新 等, | |
| MT + MeJA | 铬Cr | MeJA启动与MT应用显著缓解Cr对番茄的不良影响。氧化应激参数显著降低,有效减轻氧化损伤。MeJA和MT处理使氮代谢、抗氧化系统功能增强,次级化合物积累增加,或有助于减轻Cr诱导的氧化损伤,显示二者对Cr胁迫下番茄生长的有益交互作用 MeJA activation and MT application significantly alleviate the adverse effects of Cr on tomatoes. Oxidative stress parameters are significantly reduced,effectively mitigating oxidative damage. Treatment with MeJA and MT enhances nitrogen metabolism and the functionality of the antioxidant system,increases the accumulation of secondary compounds,and may help reduce Cr-induced oxidative damage,demonstrating a beneficial interaction of both on tomato growth under Cr stress. | Qin et al., |
| MT + S | 镧La | MT和S具有很强的调节作用和协同作用,通过增加光合作用和生长,减轻La毒性的不利影响 MT and S have a strong regulatory and synergistic effect, alleviating the adverse effects of La toxicity by enhancing photosynthesis and growth. | Siddiqui et al., |
| MT + NO | 铝Al | MT增强了受Al污染的番茄根部抗氧化酶活性,通过降低内部ROS水平,保护细胞膜和光合色素免受Al毒性影响。MT处理提高了Al污染下植物叶片和根系中植物螯合素、谷胱甘肽和NO含量,巯基化合物与NO增加,借助促进Al在根中的固定机制,减少Al向叶片转运 MT enhanced the activity of antioxidant enzymes in tomato roots contaminated with Al by reducing internal ROS levels,protecting the cell membranes and photosynthetic pigments from Al toxicity. MT treatment increased the levels of plant chelators, glutathione, and NO in the leaves and roots of plants under Al pollution, with an increase in thiol compounds and NO, helping to reduce the transport of Al to the leaves through the mechanism of promoting the fixation of Al in the roots. | Ghorbani et al., |
| 镉Cd | 外源MT或NO促进了Cd胁迫下幼苗的生长,以100 μmol · L-1 MT或NO的生物学效应最大。MT介导的NO通过调节抗坏血酸-谷胱甘肽(AsA-GSH)循环和活性氧代谢来增强Cd耐受性 Exogenous MT or NO promoted the growth of seedlings under Cd stress,with the biological effects being maximized at 100 μmol · L-1 MT or NO. MT-mediated NO enhances Cd tolerance by regulating the ascorbate-glutathione (AsA-GSH) cycle and reactive oxygen species metabolism | Xu et al., | |
| 水杨酸 Salicylic acid | 镉Cd | 低浓度Cd(1 mg · L-1)胁迫对番茄生长抑制不明显,高浓度Cd(5 mg · L-1)则显著抑制。100 μmol · L-1 SA可显著缓解高浓度Cd对番茄的毒害,提升幼苗生物量。Cd胁迫诱导番茄根系活性氧积累,且随浓度升高而增加;SA预处理同样诱导根系活性氧积累,增强番茄对氧化胁迫的抗性。 | 王小红 等, |
| 水杨酸 Salicylic acid | 镉Cd | Low concentration Cd(1 mg · L-1)stress has little effect on the growth of tomatoes,while high concentration Cd(5 mg · L-1)significantly inhibits growth. 100 μmol · L-1 SA can significantly alleviate the toxicity of high concentration Cd to tomatoes and increase seedling biomass. Cd stress induces the accumulation of reactive oxygen species(ROS)in tomato roots,and this accumulation increases with higher concentrations;SA pretreatment also induces the accumulation of ROS in the roots,enhancing the tomato's resistance to oxidative stress. | |
| 尤卡辛 Yucasin | 铝Al | 可以缓解铝胁迫导致的根生长抑制 Can alleviate root growth inhibition caused by aluminum stress | 蔡家辉 等, |
| 镉Cd | Cd干扰番茄根系生长素稳态、引发ROS积累与细胞死亡,抑制根系生长。Yucasin降低根系对镉的吸收与积累,减少ROS积累和细胞死亡,减轻番茄幼苗毒性,还缓解了Cd胁迫导致的光合色素含量下降。因此,Yucasin有望增强植物对镉污染土壤的适应性,减少作物中Cd2+积累,保障农业生产和粮食安全 Cd interferes with the homeostasis of growth regulators in tomato roots,triggering ROS accumulation and cell death,thereby inhibiting root growth. Yucasin reduces the absorption and accumulation of cadmium in the roots,decreases ROS accumulation and cell death,alleviates the toxicity in tomato seedlings,and also mitigates the decline in photosynthetic pigment content caused by Cd stress. Therefore,Yucasin is expected to enhance the adaptability of plants to Cd-contaminated soil,reduce Cd accumulation in crops,and ensure agricultural production and food security. | Liu et al., | |
| 茉莉酸甲酯 Methyl jasmonate | 镉Cd | MeJA的应用导致了Cd的吸收和氧化生物标志物的含量显着下降,抗氧化酶活性,叶片气体交换参数,光合性能和幼苗生长参数的上调 The application of MeJA led to a significant decrease in the absorption of Cd and the content of oxidative biomarkers,while upregulating antioxidant enzyme activity,leaf gas exchange parameters,photosynthetic performance,and seedling growth parameters. | Singh et al., |
| BR + MT | 镉Cd | BR和MT对番茄植株的Cd耐受性有组织特异性调节作用,且BR + Mel组合处理能有效减少Cd积累,减轻其对植物生长的负面影响 BR and MT have tissue-specific regulatory effects on the Cd tolerance of tomato plants, and the combined treatment of BR and Mel can effectively reduce Cd accumulation and mitigate its negative impact on plant growth | Huang et al., |
表2 植物生长调节剂对番茄重金属胁迫的作用效果
Table 2 Effects of plant growth regulators on heavy metal stress in tomato
| 植物生长调 节剂 Plant growth regulator | 重金 属 Heavy metal | 效果 Effect | 参考文献 Reference |
|---|---|---|---|
| 褪黑素Melatonin (MT) | 镍Ni | MT可恢复生长属性、提高光合效率、增强矿物稳态、减少氧化损伤,有效缓解镍诱导的植物毒性。在番茄幼苗中,其能提升次生代谢物含量,后者参与重金属螯合、抑制ROS形成,减轻镍对生长的抑制,提高幼苗耐受性 MT can restore growth attributes,improve photosynthetic efficiency,enhance mineral homeostasis,and reduce oxidative damage,effectively alleviating nickel-induced plant toxicity. In tomato seedlings,it can increase the content of secondary metabolites,which are involved in heavy metal chelation, inhibit the formation of ROS,mitigate nickel's inhibitory effects on growth,and improve seedling resilience | Jahan et al., |
| 铬Cr | Cr胁迫下,番茄植株形态、生理与生化特性下降,光合色素显著减少,活性氧(ROS)积累 Under Cr stress,the morphological physiological,and biochemical characteristics of tomato plants decline,chlorophyll pigments significantly reduce,and reactive oxygen species(ROS)accumulate | Raja et al., | |
| 铝Al | 铝胁迫致使番茄生理代谢改变,体内铝大量积累,生长发育受限,各器官DNA不同程度受损。外施150 μmol · L-1 MT,能提升番茄抗氧化酶活性、光合能力和根系活力,缓解根茎叶DNA损伤,降低体内铝含量,激活生理响应以抵御铝胁迫 Aluminum stress causes physiological and metabolic changes in tomatoes,leading to a significant accumulation of aluminum in the body,restricted growth and development, and varying degrees of DNA damage in different organs. Externally applying 150 μmol · L-1 MT can enhance the antioxidant enzyme activity,photosynthetic capacity,and root vitality of tomatoes,alleviate DNA damage in roots,stems,and leaves,reduce aluminum levels in the body,and activate physiological responses to withstand aluminum stress. | 张建新 等, | |
| MT + MeJA | 铬Cr | MeJA启动与MT应用显著缓解Cr对番茄的不良影响。氧化应激参数显著降低,有效减轻氧化损伤。MeJA和MT处理使氮代谢、抗氧化系统功能增强,次级化合物积累增加,或有助于减轻Cr诱导的氧化损伤,显示二者对Cr胁迫下番茄生长的有益交互作用 MeJA activation and MT application significantly alleviate the adverse effects of Cr on tomatoes. Oxidative stress parameters are significantly reduced,effectively mitigating oxidative damage. Treatment with MeJA and MT enhances nitrogen metabolism and the functionality of the antioxidant system,increases the accumulation of secondary compounds,and may help reduce Cr-induced oxidative damage,demonstrating a beneficial interaction of both on tomato growth under Cr stress. | Qin et al., |
| MT + S | 镧La | MT和S具有很强的调节作用和协同作用,通过增加光合作用和生长,减轻La毒性的不利影响 MT and S have a strong regulatory and synergistic effect, alleviating the adverse effects of La toxicity by enhancing photosynthesis and growth. | Siddiqui et al., |
| MT + NO | 铝Al | MT增强了受Al污染的番茄根部抗氧化酶活性,通过降低内部ROS水平,保护细胞膜和光合色素免受Al毒性影响。MT处理提高了Al污染下植物叶片和根系中植物螯合素、谷胱甘肽和NO含量,巯基化合物与NO增加,借助促进Al在根中的固定机制,减少Al向叶片转运 MT enhanced the activity of antioxidant enzymes in tomato roots contaminated with Al by reducing internal ROS levels,protecting the cell membranes and photosynthetic pigments from Al toxicity. MT treatment increased the levels of plant chelators, glutathione, and NO in the leaves and roots of plants under Al pollution, with an increase in thiol compounds and NO, helping to reduce the transport of Al to the leaves through the mechanism of promoting the fixation of Al in the roots. | Ghorbani et al., |
| 镉Cd | 外源MT或NO促进了Cd胁迫下幼苗的生长,以100 μmol · L-1 MT或NO的生物学效应最大。MT介导的NO通过调节抗坏血酸-谷胱甘肽(AsA-GSH)循环和活性氧代谢来增强Cd耐受性 Exogenous MT or NO promoted the growth of seedlings under Cd stress,with the biological effects being maximized at 100 μmol · L-1 MT or NO. MT-mediated NO enhances Cd tolerance by regulating the ascorbate-glutathione (AsA-GSH) cycle and reactive oxygen species metabolism | Xu et al., | |
| 水杨酸 Salicylic acid | 镉Cd | 低浓度Cd(1 mg · L-1)胁迫对番茄生长抑制不明显,高浓度Cd(5 mg · L-1)则显著抑制。100 μmol · L-1 SA可显著缓解高浓度Cd对番茄的毒害,提升幼苗生物量。Cd胁迫诱导番茄根系活性氧积累,且随浓度升高而增加;SA预处理同样诱导根系活性氧积累,增强番茄对氧化胁迫的抗性。 | 王小红 等, |
| 水杨酸 Salicylic acid | 镉Cd | Low concentration Cd(1 mg · L-1)stress has little effect on the growth of tomatoes,while high concentration Cd(5 mg · L-1)significantly inhibits growth. 100 μmol · L-1 SA can significantly alleviate the toxicity of high concentration Cd to tomatoes and increase seedling biomass. Cd stress induces the accumulation of reactive oxygen species(ROS)in tomato roots,and this accumulation increases with higher concentrations;SA pretreatment also induces the accumulation of ROS in the roots,enhancing the tomato's resistance to oxidative stress. | |
| 尤卡辛 Yucasin | 铝Al | 可以缓解铝胁迫导致的根生长抑制 Can alleviate root growth inhibition caused by aluminum stress | 蔡家辉 等, |
| 镉Cd | Cd干扰番茄根系生长素稳态、引发ROS积累与细胞死亡,抑制根系生长。Yucasin降低根系对镉的吸收与积累,减少ROS积累和细胞死亡,减轻番茄幼苗毒性,还缓解了Cd胁迫导致的光合色素含量下降。因此,Yucasin有望增强植物对镉污染土壤的适应性,减少作物中Cd2+积累,保障农业生产和粮食安全 Cd interferes with the homeostasis of growth regulators in tomato roots,triggering ROS accumulation and cell death,thereby inhibiting root growth. Yucasin reduces the absorption and accumulation of cadmium in the roots,decreases ROS accumulation and cell death,alleviates the toxicity in tomato seedlings,and also mitigates the decline in photosynthetic pigment content caused by Cd stress. Therefore,Yucasin is expected to enhance the adaptability of plants to Cd-contaminated soil,reduce Cd accumulation in crops,and ensure agricultural production and food security. | Liu et al., | |
| 茉莉酸甲酯 Methyl jasmonate | 镉Cd | MeJA的应用导致了Cd的吸收和氧化生物标志物的含量显着下降,抗氧化酶活性,叶片气体交换参数,光合性能和幼苗生长参数的上调 The application of MeJA led to a significant decrease in the absorption of Cd and the content of oxidative biomarkers,while upregulating antioxidant enzyme activity,leaf gas exchange parameters,photosynthetic performance,and seedling growth parameters. | Singh et al., |
| BR + MT | 镉Cd | BR和MT对番茄植株的Cd耐受性有组织特异性调节作用,且BR + Mel组合处理能有效减少Cd积累,减轻其对植物生长的负面影响 BR and MT have tissue-specific regulatory effects on the Cd tolerance of tomato plants, and the combined treatment of BR and Mel can effectively reduce Cd accumulation and mitigate its negative impact on plant growth | Huang et al., |
| [1] |
doi: 10.3390/horticulturae10020170 URL |
| [2] |
|
| [3] |
doi: 10.1007/s00344-020-10273-3 |
| [4] |
doi: 10.35410/IJAEB URL |
| [5] |
|
| [6] |
|
| [76] |
doi: 10.1111/plb.13296 pmid: 34263973 |
| [77] |
|
| [78] |
|
|
邵淑君, 胡璋健, 师恺. 2022. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制. 中国农业科学, 55 (9):1781-1789.
doi: 10.3864/j.issn.0578-1752.2022.09.007 |
|
| [79] |
doi: 10.1186/s40538-019-0169-9 |
| [80] |
|
|
孙倩. 2020. 独脚金内酯调控番茄侧枝生长的功能研究[硕士论文]. 杭州: 浙江大学.
|
|
| [81] |
|
| [82] |
|
| [7] |
|
| [8] |
doi: 10.1007/s00709-017-1160-6 pmid: 28905119 |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
|
蔡家辉, 王乾坤, 吴越, 刘华彬, 祝嫦巍. 2024. 植物激素对铝胁迫下番茄根生长的影响. 安徽科技学院学报, 38 (1):39-46.
|
|
| [13] |
|
|
戴陶宇, 王前程, 张迎迎, 朱为民, 张辉, 万延慧. 2022. 外源赤霉素对盐胁迫下番茄种子萌发和幼苗生长的影响. 种子, 41 (3):74-80.
|
|
| [83] |
|
| [84] |
doi: 10.1016/j.tplants.2009.03.006 pmid: 19443266 |
| [85] |
doi: 10.3906/tar-2011-4 URL |
| [86] |
|
| [87] |
|
|
王诚, 庞子千, 吴文庆. 2021. 瓜类与茄果类植物生长调节剂及应用. 长江蔬菜,(9):56-57.
|
|
| [88] |
doi: 10.3390/antiox9030218 URL |
| [89] |
|
| [90] |
|
|
王宇, 刘常金, 张秀, 李文丽, 王富. 2021. 茉莉酸甲酯对番茄颈腐根腐病抑制效果. 北方园艺,(16):39-43.
|
|
| [14] |
doi: 10.16420/j.issn.0513-353x.2023-0694 |
|
董舒超, 洪骏, 凌嘉怡, 谢紫欣, 张胜军, 赵丽萍, 宋刘霞, 王银磊, 赵统敏. 2024. 番茄抗旱性的全基因组关联分析. 园艺学报, 51 (2):229-238.
|
|
| [15] |
doi: 10.3390/foods11244097 URL |
| [16] |
|
|
豆建华, 张洋, 袁鸿, 王光正, 王俊文, 汪洁, 武玥, 唐中祺, 郁继华. 2023. 外源褪黑素对番茄果实品质和挥发性物质的影响. 干旱地区农业研究, 41 (4):83-95,117.
|
|
| [17] |
FAO. 2023. Food and agriculture organization of the United Nations. Crops and Livestock Products.
|
| [18] |
|
| [19] |
|
| [20] |
doi: 10.17221/26/2009-PPS URL |
| [21] |
|
| [91] |
|
|
王小红, 郭军康, 贾红磊, 李艳萍, 吕欣, 任倩. 2019. 外源水杨酸缓解镉对番茄毒害作用的研究. 农业环境科学学报, 38 (12):2705-2714.
|
|
| [92] |
doi: 10.16420/j.issn.0513-353x.2023-0964 |
|
王雅楠, 刘绪涛, 景桐彤, 柴亚婷, 张晓伟, 艾希珍, 毕焕改. 2024. 褪黑素对番茄衰老叶片抗氧化系统的影响. 园艺学报, 51 (11):2594-2606.
doi: 10.16420/j.issn.0513-353x.2023-0964 |
|
| [93] |
|
|
王宇, 王辉, 朱文莹, 李文丽, 王富. 2022. 水杨酸处理对番茄褪绿病毒抗性影响的初步研究. 山东农业科学, 54 (10):110-116.
|
|
| [94] |
|
| [95] |
|
|
夏春宝, 肖艳, 林玉华, 彭云凤, 吴牧晨, 吴玉娟, 吴青, 刘敏, 曾敬富. 2018. 5%萘乙酸水剂调节番茄生长增产试验试验简报. 现代园艺,(7):10-11.
|
|
| [96] |
doi: 10.16420/j.issn.0513-353x.2024-0383 |
|
萧志浩, 郑涵锴, 张曼楠, 唐怀千, 王嘉颖, 张余洋, 张俊红, 叶志彪, 叶杰. 2025. 非生物胁迫下钾对番茄苗期生长发育的影响. 园艺学报, 52 (6):1599-1618.
doi: 10.16420/j.issn.0513-353x.2024-0383 |
|
| [97] |
doi: 10.3390/ijms24119526 URL |
| [98] |
|
| [22] |
doi: 10.1038/s41598-022-15590-z |
| [23] |
doi: 10.1111/ppa.v70.2 URL |
| [24] |
|
|
郭勰. 2016. 谷氧还蛋白GRX在番茄温度胁迫响应中的作用[硕士论文]. 杭州: 浙江大学.
|
|
| [25] |
|
|
郭西智, 陈锦永, 顾红, 程大伟, 张威远, 张洋. 2018. 乙烯利在果蔬生产中的安全应用. 湖北农业科学, 57 (8):5-8.
|
|
| [26] |
doi: 10.1111/mpp.12978 URL |
| [27] |
|
| [28] |
doi: 10.3390/horticulturae9101083 URL |
| [98] |
徐加利, 尹红增, 周海燕, 崔静. 2019. 复硝酚钠和胺鲜酯·复硝酚钠对大棚番茄生长和果实品质的影响. 植物医生, 32 (1):23-26.
|
| [99] |
doi: 10.1093/jxb/ery439 pmid: 30576511 |
| [100] |
doi: 10.32615/ps.2019.168 URL |
| [101] |
|
|
许向阳, 陈小玉, 赵婷婷, 杨欢欢, 张贺, 李景富. 2018. 外源ABA喷施提高番茄幼苗抗旱性研究. 东北农业大学学报, 49 (9):1-8.
|
|
| [102] |
|
|
薛珠政, 康玉妹, 温庆放. 2015. 不同浓度复硝酚钠对番茄保花保果及产量的影响. 东南园艺,(4):24-26.
|
|
| [103] |
|
|
姚晨涛, 姜兴印, 孙晓, 刘铭钰, 高玉莹. 2019. 0.25% S-诱抗素水剂调节番茄生长田间药效试验. 现代农药, 18 (2):50-51,56.
|
|
| [104] |
|
|
杨钰颖, 苗水, 季申. 2023. 植物生长调节剂在中药中的应用及对其品质影响的研究进展. 时珍国医国药, 34 (3):668-674.
|
|
| [105] |
doi: 10.1007/s11816-022-00753-1 |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
doi: 10.1080/09168451.2018.1462693 URL |
| [33] |
|
| [34] |
|
| [35] |
doi: 10.1093/jxb/eru277 pmid: 25028558 |
| [36] |
doi: 10.9734/ijecc/2023/v13i102928 URL |
| [37] |
|
|
兰珊珊, 林昕, 沙凌杰, 林涛, 魏茂琼, 刘宏程. 2019. 植物生长调节剂对番茄产量和品质的影响及膳食摄入风险评估. 食品安全质量检测学报, 10 (23):8004-8011.
|
|
| [38] |
|
|
李长荣, 郭钧功, 邢玉芬. 1985. 整形素在果树、蔬菜上的应用. 中国农学通报,(2):20.
|
|
| [39] |
|
|
李华锋, 吴娟妹, 张珍, 赖双宗. 2023. 不同浓度多效唑对番茄幼苗生长的影响研究. 南方农机, 54 (22):46-49.
|
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
|
李维根, 明旸. 2018. 40%乙稀利水剂用于番茄生长调节药效与番茄品质测定的评价. 新农业,(24):32-33.
|
|
| [44] |
|
|
李响, 张雨婷, 李滢, 赵文浩, 段志永, 靳亚忠. 2022. 油菜素内酯及水杨酸配施对盐碱胁迫下番茄幼苗生理的影响. 北方园艺,(15):34-39.
|
|
| [45] |
|
|
李小靖, 陈银华, 张俊红, 叶志彪. 2010. 番茄SlIAA14基因启动子克隆及分析. 园艺学报, 37 (10):1605--1612.
|
|
| [46] |
|
|
李晓彤, 杨婉莹, 孙莎莎, 巩彪, 史庆华. 2019. 外源褪黑素对番茄缺钙胁迫的缓解效应. 植物生理学报, 55 (2):169-176.
|
|
| [47] |
|
|
李扬丹. 2018. 栽培方式和植物生长调节剂对番茄生长发育的影响[硕士论文]. 哈尔滨: 东北农业大学.
|
|
| [48] |
|
| [49] |
doi: 10.3390/toxics12050374 URL |
| [50] |
doi: 10.11869/j.issn.100-8551.2020.12.2858 |
|
刘浩然, 汪俏梅. 2020. 脱落酸对番茄部分果实性状和营养品质的影响. 核农学报, 34 (12):2858-2864.
doi: 10.11869/j.issn.100-8551.2020.12.2858 |
|
| [106] |
doi: 10.3969/j.issn.1004-1524.2022.09.09 |
|
闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 2022. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性. 浙江农业学报, 34 (9):1901-1910.
doi: 10.3969/j.issn.1004-1524.2022.09.09 |
|
| [107] |
|
|
杨文文, 刘媛, 聂书明. 2022. 外源油菜素内酯对盐胁迫下番茄种子萌发的影响. 园艺与种苗, 42 (11):43-46.
|
|
| [108] |
doi: 10.11924/j.issn.1000-6850.casb2021-0530 |
|
杨艺炜, 王家哲, 任平, 刘晨, 李明明, 李英梅. 2022. 低温胁迫对早春茬番茄生长和产量的影响. 中国农学通报,(10):32-37.
doi: 10.11924/j.issn.1000-6850.casb2021-0530 |
|
| [109] |
doi: 10.1071/FP18106 pmid: 32172764 |
| [110] |
|
|
张焕丽, 李晓慧, 段小玲, 李逸. 2014. 常用植物生长调节剂在番茄初冬季育苗上的应用效果. 中国瓜菜, 27 (2):43-44.
|
|
| [111] |
doi: 10.1038/s41586-024-08186-2 |
| [51] |
|
| [52] |
|
|
刘明慧, 田虹雨, 刘之广, 巩彪. 2023. 减磷条件下含褪黑素的尿素缓释功能肥对番茄生长、产量、品质和磷素利用效率的影响. 中国农业科学, 56 (3):519-528.
doi: 10.3864/j.issn.0578-1752.2023.03.010 |
|
| [53] |
|
|
刘忠德. 2007. 植物生长调节剂2%胺鲜酯水剂在番茄上的应用研究. 现代农业科技,(9):10-12.
|
|
| [54] |
|
|
罗静静, 王贺亚, 王付成, 王康, 王霞, 庞晓燕. 2021. 水杨酸处理对番茄幼苗期生长发育的影响. 农业与技术, 41 (1):28-29.
|
|
| [55] |
doi: 10.1111/jfds.1980.45.issue-2 URL |
|
马海云, 张忠林, 霍静. 2024. 外源施用茉莉酸甲酯对番茄果实挥发性风味成分及含量的影响. 食品科学, 45 (7):182-190.
|
|
| [56] |
|
|
马建华. 2010. 不同浓度2,4-D蘸花对早春日光温室番茄坐果率的影响. 北方园艺,(22):58-59.
|
|
| [57] |
|
|
马亚男, 曹依林, 苏璐璐, 王辉, 辛世杰, 姜波, 王富, 朱文莹. 2023. 喷施矮壮素对番茄植株及果实品质的影响. 山东农业科学, 55 (12):71-78.
|
|
| [58] |
doi: 10.4025/actasciagron.v44i1.55647 URL |
| [59] |
doi: 10.1016/s0013-9351(03)00121-x pmid: 14757385 |
| [60] |
|
|
苗宇, 蒋舒蕊, 赵凯, 朱海山. 2023. 不同植物生长调节剂对番茄种子萌发和根系生长的影响. 现代园艺, 46 (17):56-58.
|
|
| [61] |
doi: 10.3390/horticulturae6040093 URL |
| [62] |
doi: 10.3390/biom10010054 URL |
| [63] |
doi: 10.1016/j.freeradbiomed.2007.03.034 pmid: 17640558 |
| [64] |
|
|
聂波. 2020. 探究植物生长调节剂在番茄上的应用. 河南农业,(26):24-25.
|
|
| [65] |
|
| [66] |
|
| [112] |
|
|
张建新, 孙靖菲, 叶玢妤, 李汉美, 阮心依, 杜妍纯, 杨海慧, 叶怡彤, 陈雪, 刘鹏. 2023. 外源褪黑素对铝胁迫下番茄生长的调节作用. 福建农业学报, 38 (6):698-706.
|
|
| [113] |
|
|
张雪蒙, 亢超, 滕元旭, 陈静怡, 崔辉梅. 2022. 外源硫化氢和水杨酸对盐胁迫下加工番茄幼苗生长与生理特性的影响. 西北植物学报, 42 (2):255-262.
|
|
| [114] |
|
|
张文, 韩昕炜, 张静, 唐明明, 胡德禹. 2015. 萘乙酸对番茄品质的影响及其在番茄中的残留检测. 辽宁化工, 44 (4):375-378,381.
|
|
| [115] |
|
|
张燕, 任毛飞, 赵琳, 李蒙. 2018. 6-BA和NAA对番茄种子萌发的影响. 安徽农学通报, 24 (23):23-25.
|
|
| [116] |
|
|
赵海亮, 左璐, 马长恩, 白龙强, 胡晓辉, 侯雷平. 2021. 果实膨大期叶面喷施褪黑素对番茄品质的影响. 北方园艺,(17):15-21.
|
|
| [117] |
doi: S0092-8674(17)31499-X pmid: 29328914 |
| [67] |
|
| [68] |
|
|
千春录, 罗迎秋, 张云, 孙琰, 邵豫阳, 张蓓, 齐晓花. 2023. 外源褪黑素对采后冷藏番茄硬度变化的影响及调控机制. 美食研究, 40 (3):92-98.
|
|
| [69] |
|
| [70] |
doi: 10.3390/agronomy14061227 URL |
| [71] |
|
| [72] |
doi: 10.1038/s41598-023-31023-x pmid: 36899076 |
| [73] |
|
|
任士伟, 贾莉莉, 王龙, 刘村平, 刘宏斌, 徐劲松, 李曰鹏, 张启全. 2024. 不同浓度氯吡脲冲施对茄果作物苗期生长的影响. 农业工程技术, 44 (12):63-65.
|
|
| [74] |
doi: 10.1111/pbi.2013.11.issue-3 URL |
| [75] |
|
| [1] | 吴珏, 施颖红, 唐玉英, 王馨曼, 占绣萍. 上海地区不结球白菜农艺性状和营养品质分析与评价[J]. 园艺学报, 2026, 53(1): 219-228. |
| [2] | 邹学校, 李国琛, 庹炼, 杨莎, 朱凡, 徐昊, 胡博文, 熊程, 戴雄泽, 远方. 南疆辣椒产业高质量发展优势与对策[J]. 园艺学报, 2026, 53(1): 303-312. |
| [3] | 刘照坤, 王欢, 韩建军, 王莹莹, 周鸿章. 不结球白菜新品种‘苏青1号’[J]. 园艺学报, 2025, 52(S2): 101-102. |
| [4] | 宰文珊, 陈先知, 付存念, 苏世闻, 史建磊, 熊自立, 黄少勇. 口感番茄新品种‘瓯秀901’[J]. 园艺学报, 2025, 52(S2): 121-122. |
| [5] | 王荣青, 姚祝平, 程远, 叶青静, 阮美颖, 万红建, 李志邈, 刘晨旭, 周国治. 高品质耐贮运番茄新品种‘浙粉718’[J]. 园艺学报, 2025, 52(S2): 123-124. |
| [6] | 郑梦凡, 谢勇, 郑伟, 李光乾, 陈刚, 王煜双, 李聪, 张余洋. 优质番茄新品种‘民丰698’[J]. 园艺学报, 2025, 52(S2): 125-126. |
| [7] | 朱鹏宇, 谢勇, 郑伟, 李光乾, 陈刚, 王煜双, 李聪, 张余洋. 优质番茄新品种‘希唯美191’[J]. 园艺学报, 2025, 52(S2): 127-128. |
| [8] | 崔爱花, 朱模勇, 张扬栋, 伍琦, 刘帅, 胡启星, 黄纪刚, 刘家鑫, 刘为胜, 孙巨龙. 大果型番茄新品种‘奥丽亚’[J]. 园艺学报, 2025, 52(S2): 129-130. |
| [9] | 郑于莉, 刘燕, 潘子旺, 韩兰兰, 李凯, 刘丹, 曹阳, 芦鑫哲, 康永生. 多抗硬粉番茄新品种‘BY002’[J]. 园艺学报, 2025, 52(S2): 131-132. |
| [10] | 苏世闻, 付存念, 陈先知, 崔丽利, 史建磊, 黄少勇, 熊自立, 宰文珊. 樱桃番茄新品种‘瓯秀红樱5号’[J]. 园艺学报, 2025, 52(S2): 133-134. |
| [11] | 付存念, 苏世闻, 陈先知, 崔丽利, 史建磊, 黄少勇, 熊自立, 宰文珊. 樱桃番茄新品种‘瓯秀橙樱1号’[J]. 园艺学报, 2025, 52(S2): 135-136. |
| [12] | 熊自立, 苏世闻, 史建磊, 张海利, 宰文珊, 崔丽利. 番茄砧木新品种‘瓯砧1号’[J]. 园艺学报, 2025, 52(S2): 137-138. |
| [13] | 朱德宁, 吴宇军, 余炳伟, 李莲芳. 有棱丝瓜新品种‘夏胜6号’[J]. 园艺学报, 2025, 52(S2): 167-168. |
| [14] | 余小林, 平 凡, 黄 鹂, 曹家树, 宋建伟, 卢 钢. 早中熟不结球白菜新品种‘钱塘青’[J]. 园艺学报, 2025, 52(S1): 91-92. |
| [15] | 范惠冬, 郑士金, 田 松, 郑建超. 番茄新品种‘吉粉7号’[J]. 园艺学报, 2025, 52(S1): 109-110. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司