https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2025, Vol. 52 ›› Issue (12): 3180-3188.doi: 10.16420/j.issn.0513-353x.2024-0978

• 遗传育种·种质资源·分子生物学 • 上一篇    下一篇

基于果实表型性状构建火龙果核心种质

韦蒴曈, 武志江, 李祯英, 黄凤珠, 梁桂东, 邓海燕, 黄黎芳, 叶小滢, 陆贵锋*()   

  1. 广西壮族自治区农业科学院园艺研究所,南宁 530007
  • 收稿日期:2025-07-04 修回日期:2025-09-24 出版日期:2025-12-25 发布日期:2025-12-20
  • 通讯作者:
    *(E-mail:
  • 基金资助:
    广西重点研发计划项目(桂农科AB241484009)

Construction of Core Collection of Pitaya Based on Phenotypic Traits

WEI Shuotong, WU Zhijiang, LI Zhenying, HUANG Fengzhu, LIANG Guidong, DENG Haiyan, HUANG Lifang, YE Xiaoying, LU Guifeng*()   

  1. Horticulture Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,China
  • Received:2025-07-04 Revised:2025-09-24 Published:2025-12-25 Online:2025-12-20

摘要:

以292份火龙果种质为试材,基于19项果实表型性状数据,通过4种取样方法,6种取样比例,构建了24组候选核心种质群体,以表型保留比例(RPR)、极差符合率(CR)、变异系数变化率(VR)和Shannon-Weaver多样性指数(I)为评价指标,确定最佳核心种质构建策略;而后通过人工定向补充具有特异性状的种质,最终构建包含50份样品的火龙果核心种质,占原始种质的17.12%,其CRRPRIVR等评价指标分别为100.00%、99.44%、1.80、131.52%。主成分分析显示,该核心种质在样品分布图中均匀分布,覆盖了原种质的分布范围,同时有效减少了原始种质中的重叠部分。评价指标和主成分分析结果均表明,核心种质在去除冗余的同时有效地保留了原始种质的遗传多样性。

关键词: 火龙果, 核心种质, 表型性状

Abstract:

The 292 pitaya(Selenicereus spp.)accessions were used as materials. Based on 19 phenotypic traits,24 candidate core collections were constructed using 4 sampling methods and six sampling ratios. The optimal core collection construction strategy was determined based on four evaluation indicators:Ratio of Phenotype Retained(RPR),Range Conformity Rate(CR),Variation Coefficient Change Rate(VR),and Shannon-Weaver Diversity Index(I). Accessions with specific traits were then selectively added to the core collection,resulting in a final core collection of 50 pitaya accessions,which accounts for 17.12% of the original collection. The evaluation indicators,including CRRPRI,and VR,were 100.00%,99.44%,1.80,and 131.52%,respectively. Principal component analysis (PCA) showed that the core collection was evenly distributed in the sample distribution plot,covering the range of the original collection,and effectively reduced the overlapping portion of the original collection. Both the evaluation indicators and PCA results indicate that the core collection constructed in this study effectively preserved the genetic diversity of the original collection while removing redundancy.

Key words: pitaya, core collection, phenotypic traits