https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2025, Vol. 52 ›› Issue (6): 1519-1529.doi: 10.16420/j.issn.0513-353x.2024-0511

• 遗传育种·种质资源·分子生物学 • 上一篇    下一篇

蝴蝶兰种质资源遗传多样性及核心种质构建

李佐, 肖文芳*(), 陈和明, 吕复兵*()   

  1. 广东省农业科学院环境园艺研究所,广东省园林花卉种质创新综合利用重点实验室,广州 510640
  • 收稿日期:2025-02-21 修回日期:2025-03-28 出版日期:2025-06-20 发布日期:2025-06-20
  • 通讯作者:
  • 基金资助:
    国家重点研发计划子课题(2023YFD230090402); 广州市科技计划项目(2024E04J1267); 2023年度农村科技与配套国家项目(2023B0202010030); 国家自然科学基金(31201650); 高端外国专家引进计划项目(G2023030036L)

Genetic Diversity and Core Collection Construction of Phalaenopsis Germplasm Resources

LI Zuo, XIAO Wenfang*(), CHEN Heming, and LÜ Fubing*()   

  1. Environmental Horticulture Research Institute of Guangdong Academy of Agricultural Sciences,Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization,Guangzhou 510640,China
  • Received:2025-02-21 Revised:2025-03-28 Published:2025-06-20 Online:2025-06-20

摘要:

本研究采用SSR荧光标记技术对412份蝴蝶兰种质资源进行了系统的遗传多样性分析和核心种质构建。利用10对SSR分子标记对供试种质进行了遗传多样性检测,结果共检测到124个等位基因(Na),平均有效等位基因数(Ne)为2.489,Shannon’s信息指数()为1.209,表明蝴蝶兰种质资源具有丰富的遗传多样性。在此基础上,根据最大化策略法,采用Core Finder软件和t检验,筛选出53份核心种质,占原有种质资源的13%,等位基因数(Na)保留率为100%,有效等位基因数(Ne)保留率为138%,Shannon’s信息指数()保留率为127%。t检验结果显示,构建的核心种质与原始种质的遗传参数无显著差异,能充分代表蝴蝶兰原有种质资源的遗传多样性。

关键词: 蝴蝶兰, 种质资源, SSR, 遗传多样性, 核心种质

Abstract:

This study employed fluorescence-based SSR marker technology to conduct a systematic genetic diversity analysis and core germplasm construction of 412 Phalaenopsis germplasm accessions. A total of 124 alleles(Na)were detected using 10 pairs of SSR markers,with an average number of effective alleles(Ne)of 2.489 and a Shannon’s Information Index()of 1.209,indicating a high level of genetic diversity in the Phalaenopsis germplasm resources. Based on this,core collection was selected using the maximisation strategy method,Core Finder software,and t-tests,resulting in the identification of 53 core collection,representing 13% of the original germplasm collection. This core set retained 100% of the alleles(Na),138% of the effective alleles(Ne),and 127% of the Shannon’s information index(). The results of the t-test showed no significant differences in the genetic parameters between the constructed core collection and the original collection,demonstrating that the constructed core collection effectively represents the genetic diversity of the original Phalaenopsis germplasm resources.

Key words: Phalaenopsis, germplasm resources, SSR, genetic diversity, core collection