[1] |
Abuqamar S, Ajeb S, Sham A, Enan M R, Iratni R. 2013. A mutation in the expansin-like A 2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Molecular Plant Pathology, 14 (8):813-827.
doi: 10.1111/mpp.12049
pmid: 23782466
|
[2] |
Chen L, Zou W, Wu G, Lin H, Xi D. 2018. Tobacco alpha-expansin EXPA4 plays a role in Nicotiana benthamiana defence against Tobacco mosaic virus. Planta, 247:355-368.
doi: 10.1007/s00425-017-2785-6
pmid: 28993946
|
[3] |
Cho H T, Cosgrove D J. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. The Plant Cell, 14:3237-3253.
|
[4] |
Cosgrove D J. 1993. How do plant cell wall extend? Plant Physiology, 102:1-6.
doi: 10.1104/pp.102.1.1
pmid: 11536544
|
[5] |
Cosgrove D J. 2000. Loosening of plant cell walls by expansins. Nature, 407:321-326.
|
[6] |
Dong B, Wang Q Q, Zhou D, Wang Y G, Miao Y F, Zhong S W, Fang Q, Yang L Y, Xiao Z, Zhao H B. 2024. Abiotic stress treatment reveals expansin like a gene OfEXLA1improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid. Horticultural Plant Journal, 10 (2):573-585.
|
[7] |
Gookin T E, Hunter D A, Reid M S. 2003. Temporal analysis of alpha and beta-expansin expression during floral opening and senescence. Plant Science, 164:769-781.
|
[8] |
Han Y, Li A, Li F, Zhao M, Wang W. 2012. Characterization of a wheat(Triticum aestivum L.)expansin gene,TaEXPB23,involved in the abiotic stress response and phytohormone regulation. Plant Physiology and Biochemistry, 54:49-58.
|
[9] |
Karlova R, Rosin F M, Busscherlange J, Parapunova V, Do P T, Fernie A R, Fraser P D, Baxter C, Angenent G C, Maagd R A D. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell, 23:923-941.
|
[10] |
Kuluev B R, Knyazev A B, Lebedev Y P, Chemeris A V. 2012. Morphological and physiological characteristics of transgenic tobacco plants expressing expansin genes:AtEXP10 from Arabidopsis and PnEXPA1 from poplar. Russian Journal of Plant Physiology, 59 (1):97-104.
|
[11] |
Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33:1870-1874.
|
[12] |
Li F, Xing S C, Guo Q F, Zhao M R, Zhang J, Gao Q, Wang G P, Wang W. 2010. Drought tolerance through over-expression of expansin gene TaEXPB23 in transgenic tobacco. Journal of Plant Physiology, 168:960-966.
|
[13] |
Liu X P, Dong S Y, Miao H, Bo K L, Li C X, Yang Y Y, Gu X F, Zhang S P. 2022. Genome-wide analysis of expansins and their role in fruit spine development in cucumber (Cucumis sativus L.). Horticultural Plant Journal, 8 (6):757-768.
|
[14] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[15] |
Ma Shuang. 2021. Genome-wide analysis of the expansin gene family in Phyllostachys edulis and functional analysis of PeEXPA8[M. D. Dissertation]. Mianyang: Southwest University of Science and Technology. (in Chinese)
|
|
马霜. 2021. 毛竹扩展蛋白家族全基因组分析及PeEXPA8功能研究[硕士论文]. 绵阳: 西南科技大学.
|
[16] |
Marowa P, Ding A, Xu Z, Kong Y. 2020. Overexpression of NtEXPA11 modulates plant growth and development and enhances stress tolerance in tobacco. Plant Physiology and Biochemistry, 151:477-485.
|
[17] |
Mcqueenmason S. 2003. Expansins and cell growth. Current Opinion in Plant Biology, 6:603.
doi: 10.1016/j.pbi.2003.09.003
pmid: 14611960
|
[18] |
Muthusamy M, Kim J A, Jeong M J, Lee S I. 2020. Blue and red light upregulate α-expansin 1 (EXPA1) in transgenic Brassica rapa and its overexpression promotes leaf and root growth in Arabidopsis. Plant Growth Regulation, 91:75-87.
|
[19] |
Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 15:1509-1519.
|
[20] |
Peng A, Xu L, He Y, Lei T, Yao L, Chen S, Zou X. 2015. Efficient production of marker-free transgenic‘Tarocco’blood orange(Citrus sinensis Osbeck)with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell Tissue and Organ Culture, 123:1-13.
|
[21] |
Peng A, Zou X, Xu L, He Y, Lei T, Yao L, Li Q, Chen S. 2019. Improved protocol for the transformation of adult Citrus sinensis Osbeck‘Tarocco’blood orange tissues. In Vitro Cellular & Developmental Biology-Plant, 55:659-667.
|
[22] |
Sampedro J, Guttman M, Li L C, Cosgrove D J. 2015. Evolutionary divergence of β-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. The Plant Journal, 81:108-120.
doi: 10.1111/tpj.12715
pmid: 25353668
|
[23] |
Sun Yongdong, Luo Weirong, Zhang Chuanlai. 2009. Protein sequence analysis for expansin family. China Journal of Bioinformatics, 7 (3):193-195. (in Chinese)
|
|
孙涌栋, 罗未蓉, 张传来. 2009. 扩张蛋白家族蛋白序列分析. 生物信息学, 7 (3):193-195.
|
[24] |
Tan J, Wang M, Shi Z, Miao X. 2018. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. Plant Cell Reports, 37 (7):993-1002.
|
[25] |
Trivedi P K, Nath P. 2004. MaExp1,an ethylene-induced expansin from ripening banana fruit. Plant Science, 167 (6):1351-1358.
|
[26] |
Vreeburg R A M, Benschop J J, Peeters A J M, Colmer T D, Ammerlaan A H M, Staal M, Elzenga T M, Staals R H, Darley C P, McQueen-Mason S J, Voesenek L A C J. 2005. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. The Plant Journal, 43 (4):597-610.
|
[27] |
Wang G F, Gao Y, Wang J J, Yang L W, Song R, Li X R, Shi J S. 2011. Overexpression of two cambium-abundant Chinese fir(Cunninghamia lanceolata)α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnology Journal, 9 (4):486-502.
|
[28] |
Xing S C, Li F, Guo Q F, Liu D R, Zhao X X, Wang W. 2009. The involvement of an expansin gene TaEXPB23 from wheat in regulating plant cell growth. Biology Plantarum, 53:429-434.
|
[29] |
Xu Chaofeng. 2020. Functional identification of tomato expansin genes SlEXPA3 and SlEXLB1[M. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese)
|
|
徐超峰. 2020. 番茄扩张蛋白基因SlEXPA3和SlEXLB1的功能鉴定[硕士论文]. 武汉: 华中农业大学.
|
[30] |
Yang Ruojiao. 2020. Functional analysis of expansin gene TaEXPA2 in wheat(Triticumaestivum L.)drought tolerance[M. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese)
|
|
杨若娇. 2020. 扩展蛋白基因在小麦耐旱性中的功能分析[硕士论文]. 泰安: 山东农业大学.
|
[31] |
Zust T, Grawal A A. 2017. Trade-offs between plant growth and defense against insect herbivory:an emerging mechanistic synthesis. Annual Review of Plant Biology, 68:513-534.
|