[1] |
Alves C M, Noyszewski A K, Smith A G. 2019. Structure and function of class III pistil-specific extensin-like protein in interspecific reproductive barriers. BMC Plant Biology, 19 (1):1-11.
doi: 10.1186/s12870-018-1600-2
|
[2] |
Amien S, Kliwer I, Márton M L, Debener T, Geiger D, Becker D, Dresselhaus T. 2010. Defensin-like ZmES 4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biology, 8 (6):e1000388.
|
[3] |
Baek Y S, Covey P A, Petersen J J, Chetelat R T, McClure B, Bedinger P A. 2015. Testing the SI × SC rule:pollen-pistil interactions in interspecific crosses between members of the tomato clade (Solanum section Lycopersicon, Solanaceae). American Journal of Botany, 102 (2):302-311.
|
[4] |
Bedinger P A, Broz A K, Tovar-Mendez A, McClure B. 2017. Pollen-pistil interactions and their role in mate selection. Plant Physiology, 173 (1):79-90.
doi: 10.1104/pp.16.01286
pmid: 27899537
|
[5] |
Bernacchi D, Tanksley S D. 1997. An interspecific backcross of Lycopersicon esculentum × L. hirsutum:linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics, 147 (2):861-877.
doi: 10.1093/genetics/147.2.861
pmid: 9335620
|
[6] |
Bosch M, Hepler P K. 2005. Pectin methylesterases and pectin dynamics in pollen tubes. The Plant Cell, 17 (12):3219-3226.
doi: 10.1105/tpc.105.037473
URL
|
[7] |
Broz A K, Bedinger P A. 2021. Pollen-pistil interactions as reproductive barriers. Annual Review of Plant Biology, 72:615-639.
doi: 10.1146/annurev-arplant-080620-102159
pmid: 34143652
|
[8] |
Broz A K, Randle A M, Sianta S A, Tovar‐Méndez A, McClure B, Bedinger P A. 2017. Mating system transitions in Solanum habrochaites impact interactions between populations and species. New Phytologist, 213 (1):440-454.
doi: 10.1111/nph.2017.213.issue-1
URL
|
[9] |
Burton R S, Pereira R J, Barreto F S. 2013. Cytonuclear genomic interactions and hybrid breakdown. Annual Review of Ecology,Evolution,and Systematics, 44 (1):281-302.
doi: 10.1146/ecolsys.2013.44.issue-1
URL
|
[10] |
Callaway T D, Singh-Cundy A. 2019. HD-AGPs as speciation genes:positive selection on a proline-rich domain in non-hybridizing species of Petunia, Solanum,and Nicotiana. Plants,doi:10.3390/plants8070211.
|
[11] |
Cao Ming-ming, Yang Jia, Li Xiao-yu, Li Yu-hua, Lan Xing-guo. 2015. Analysis and characterization of interaction domain between ARC1 and Exo70A1 from ornamental kale (Brassica oleracea var. acephala). Acta Horticulturae Sinica, 42 (4):791-798. (in Chinese)
|
|
曹明明, 杨佳, 李晓屿, 李玉花, 蓝兴国. 2015. 羽衣甘蓝ARC1与Exo70A1蛋白相互作用结构域的分析与鉴定. 园艺学报, 42 (4):791-798.
|
[12] |
Chae K, Lord E M. 2011. Pollen tube growth and guidance:roles of small,secreted proteins. Annals of Botany, 108 (4):627-636.
doi: 10.1093/aob/mcr015
URL
|
[13] |
Chalivendra S C, Lopez-Casado G, Kumar A, Kassenbrock A R, Royer S, Tovar-Mèndez A, Covey P A, Dempsey L A, Randle A M, Stack S M. 2013. Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. Journal of Experimental Botany, 64 (1):265-279.
doi: 10.1093/jxb/ers324
pmid: 23166371
|
[14] |
Chen Q, Meng D, Gu Z, Li W, Yuan H, Duan X, Yang Q, Li Y, Li T. 2018. SLFL genes participate in the ubiquitination and degradation reaction of S-RNase in self-compatible peach. Frontiers in Plant Science,doi: 10.3389/fpls.2018.00227.
|
[15] |
Chen X, Hao S, Wang L, Fang W, Wang Y, Li X. 2012. Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia, 67:347-351.
doi: 10.2478/s11756-012-0018-9
URL
|
[16] |
Cheung A Y, Chen C Y, Tao L Z, Andreyeva T, Twell D, Wu H M. 2003. Regulation of pollen tube growth by Rac-like GTPases. Journal of Experimental Botany, 54 (380):73-81.
pmid: 12456757
|
[17] |
do Canto J, Studer B, Frei U, Lübberstedt T. 2018. Fine mapping a self-fertility locus in perennial ryegrass. Theoretical and Applied Genetics, 131 (4):817-827.
doi: 10.1007/s00122-017-3038-6
pmid: 29247258
|
[18] |
Eberle C A, Anderson N O, Clasen B M, Hegeman A D, Smith A G. 2013. PELPIII:the class III pistil‐specific extensin‐like Nicotiana tabacum proteins are essential for interspecific incompatibility. The Plant Journal, 74 (5):805-814.
doi: 10.1111/tpj.2013.74.issue-5
URL
|
[19] |
Edlund A F, Swanson R, Preuss D. 2004. Pollen and stigma structure and function:the role of diversity in pollination. The Plant Cell, 16 (1),S84-S97.
|
[20] |
Endress P K. 2011. Angiosperm ovules:diversity, development,evolution. Annals of Botany, 107 (9):1465-1489.
|
[21] |
Fujii S, Kubo K I, Takayama S. 2016. Non-self-and self-recognition models in plant self-incompatibility. Nature Plants, 2 (9):1-9.
|
[22] |
Fujii S, Tsuchimatsu T, Kimura Y, Ishida S, Tangpranomkorn S, Shimosato-Asano H, Iwano M, Furukawa S, Itoyama W, Wada Y. 2019. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. Nature Plants, 5 (7):731-741.
doi: 10.1038/s41477-019-0444-6
pmid: 31263241
|
[23] |
Gasser C S, Skinner D J. 2019. Development and evolution of the unique ovules of flowering plants. Current Topics in Developmental Biology, 131:373-399.
doi: S0070-2153(18)30078-4
pmid: 30612624
|
[24] |
Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M C, Luo X, Ruan H, García-Valencia L E, Zhong S. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science, 358 (6370):1596-1600.
doi: 10.1126/science.aao3642
URL
|
[25] |
Gotelli M M, Lattar E C, Zini L M, Galati B G. 2017. Style morphology and pollen tube pathway. Plant Reproduction, 30 (4):155-170.
doi: 10.1007/s00497-017-0312-3
pmid: 29116403
|
[26] |
Goring D R. 2018. Exocyst,exosomes,and autophagy in the regulation of Brassicaceae pollen-stigma interactions. Journal of Experimental Botany, 69 (1):69-78.
doi: 10.1093/jxb/erx340
URL
|
[27] |
Gu Y, Vernoud V, Fu Y, Yang Z. 2003. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. Journal of Experimental Botany, 54 (380):93-101.
pmid: 12456759
|
[28] |
Gutermuth T, Herbell S, Lassig R, Brosché M, Romeis T, Feijó J A, Hedrich R, Konrad K R. 2018. Tip-localized Ca2+-permeable channels control pollen tube growth via kinase-dependent R- and S-type anion channel regulation. New Phytologist, 218 (3):1089-1105.
doi: 10.1111/nph.15067
pmid: 29522235
|
[29] |
He Min, Gu Chao, Wu Juyou, Zhang Shaoling. 2021. Recent advances on self-incompatibility mechanism in fruit trees. Acta Horticulturae Sinica, 48 (4):759-777. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0425
URL
|
|
何敏, 谷超, 吴巨友, 张绍铃. 2021. 果树自交不亲和机制研究进展. 园艺学报, 48 (4):759-777.
doi: 10.16420/j.issn.0513-353x.2020-0425
URL
|
[30] |
Herridge R, McCourt T, Jacobs J M E, Mace P, Brownfield L, Macknight R. 2022. Identification of the genes at S and Z reveals the molecular basis and evolution of grass self-incompatibility. Frontier in Plant Science, 13:1011299.
|
[31] |
Heslop-Harrison J. 1982. Pollen-stigma interaction and cross-incompatibility in the grasses. Science, 215 (4538):1358-1364.
pmid: 17753001
|
[32] |
Heslop-Harrison Y. 2000. Control gates and micro-ecology:the pollen stigma interaction in perspective. Annals of Botany, 85 (Suppl 1):5-13.
doi: 10.1006/anbo.1999.1063
URL
|
[33] |
Heslop-Harrison Y, Shivanna K R. 1977. The receptive surface of the angiosperm stigma. Annals of Botany, 41 (6):1233-1258.
doi: 10.1093/oxfordjournals.aob.a085414
URL
|
[34] |
Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T. 1998. Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. The Plant Cell, 10 (12):2019-2031.
pmid: 9836742
|
[35] |
Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S-y, Kuroiwa H, Kuroiwa T. 2001. Pollen tube attraction by the synergid cell. Science, 293 (5534):1480-1483.
pmid: 11520985
|
[36] |
Hülskamp M, Kopczak S D, Horejsi T F, Kihl B K, Pruitt R E. 1995. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. The Plant Journal, 8 (5):703-714.
doi: 10.1046/j.1365-313X.1995.08050703.x
URL
|
[37] |
Hu Shi-yi. 1994. Plant embryological test methods (5) Section method for examining pollen germination on stigma and pollen tube growth in style. Chinese Bulletin of Botany, 3 (2):58-60. (in Chinese)
|
|
胡适宜. 1994. 植物胚胎学实验方法(五)检查花粉在柱头上萌发和花粉管在花柱中生长的制片法. 植物学通报, 3 (2):58-60.
|
[38] |
Huang J, Yang L, Yang L, Wu X, Cui X, Zhang L, Hui J, Zhao Y, Yang H, Liu S, Xu Q, Pang M, Guo X, Cao Y, Chen Y, Ren X, Lv J, Yu J, Ding J, Xu G, Wang N, Wei X, Lin Q, Yuan Y, Zhang X, Ma C, Dai C, Wang P, Wang Y, Cheng F, Zeng W, Palanivelu R, Wu H M, Zhang X, Cheung A Y, Duan Q. 2023. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature, 614 (7947):303-308.
doi: 10.1038/s41586-022-05640-x
|
[39] |
Jany E, Nelles H, Goring D R. 2019. The molecular and cellular regulation of Brassicaceae self-incompatibility and self-pollen rejection. International Review of Cell and Molecular Biology, 343:1-35.
doi: S1937-6448(18)30061-3
pmid: 30712670
|
[40] |
Kandasamy M K, Nasrallah J B, Nasrallah M E. 1994. Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development, 120 (12):3405-3418.
doi: 10.1242/dev.120.12.3405
URL
|
[41] |
Kay K M. 2006. Reproductive isolation between two closely related hummingbird pollinated neotropical gingers. Evolution, 60 (3):538-552.
|
[42] |
Kermicle J L, Evans M. 2005. Pollen-pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. Sexual Plant Reproduction, 18 (4):187-194.
doi: 10.1007/s00497-005-0012-2
URL
|
[43] |
Klaas M, Yang B, Bosch M, Thorogood D, Manzanares C, Armstead I P, Franklin F, Barth S. 2011. Progress towards elucidating the mechanisms of self-incompatibility in the grasses:further insights from studies in Lolium. Annals of Botany, 108 (4):677-685.
doi: 10.1093/aob/mcr186
URL
|
[44] |
Kubo K I, Entani T, Takara A, Wang N, Fields A M, Hua Z, Toyoda M, Kawashima S I, Ando T, Isogai A. 2010. Collaborative non-self recognition system in S-Rnase-based self-incompatibility. Science, 330 (6005):796-799.
doi: 10.1126/science.1195243
URL
|
[45] |
Lanaud C, Fouet O, Legavre T, Lopes U, Sounigo O, Eyango M C, Mermaz B, da Silva M R, Loor Solorzano R G, Argout X. 2017. Deciphering the Theobroma cacao self-incompatibility system:from genomics to diagnostic markers for self-compatibility. Journal of Experimental Botany, 68 (17):4775-4790.
doi: 10.1093/jxb/erx293
URL
|
[46] |
Li L, Liu B, Deng X, Zhao H, Li H, Xing S, Fetzer D D, Li M, Nasrallah M E, Nasrallah J B. 2018. Evolution of interspecies unilateral incompatibility in the relatives of Arabidopsis thaliana. Molecular Ecology, 27 (12):2742-2753.
doi: 10.1111/mec.2018.27.issue-12
URL
|
[47] |
Li W, Chetelat R T. 2010. A pollen factor linking inter-and intraspecific pollen rejection in tomato. Science, 330 (6012):1827-1830.
doi: 10.1126/science.1197908
URL
|
[48] |
Li W, Chetelat R T. 2014. The role of a pollen-expressed Cullin 1 protein in gametophytic self-incompatibility in Solanum. Genetics, 196 (2):439-442.
doi: 10.1534/genetics.113.158279
|
[49] |
Li W, Chetelat R T. 2015. Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proceedings of the National Academy of Sciences, 112 (14):4417-4422.
|
[50] |
Lin Z, Eaves D J, Sanchez-Moran E, Franklin F C H, Franklin-Tong V E. 2015. The Papaver rhoeas S determinants confer self-incompatibility to Arabidopsis thaliana in planta. Science, 350 (6261):684-687.
doi: 10.1126/science.aad2983
URL
|
[51] |
Liu J, Hussey P J. 2014. Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics,cell wall and ion dynamics. Frontiers in Plant Science,doi: 10.3389/fpls.2014.00392.
|
[52] |
Lu G H, Xu J L, Zhong M X, Li D L, Chen M, Li K T, Wang Y Q. 2022. Cytochemical and comparative transcriptome analyses elucidate the formation and ecological adaptation of three types of pollen coat in Zingiberaceae. BMC Plant Biology, 22 (1):1-16.
doi: 10.1186/s12870-021-03391-x
|
[53] |
Lu Y, Hokin S A, Kermicle J L, Hartwig T, Evans M. 2019. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays. Nature Communications, 10 (1):1-7.
doi: 10.1038/s41467-018-07882-8
|
[54] |
Ma L, Zhang C Z, Zhang B, Tang, F, Li F T, Liao Q G, Tang D, Peng Z, Jia Y X, Gao M, Guo H, Zhang J Z, Luo X M, Yang H Q, Gao D L, Lucas W J, Li C H, Huang S W, Shang Y. 2021. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nature Communications, 12 (1):4142.
doi: 10.1038/s41467-021-24266-7
pmid: 34230469
|
[55] |
Manzanares C, Barth S, Thorogood D, Byrne S L, Yates S, Czaban A, Asp T, Yang B, Studer B. 2016. A gene encoding a DUF 247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Molecular Biology and Evolution, 33 (4):870-884.
doi: 10.1093/molbev/msv335
pmid: 26659250
|
[56] |
Márton M L, Cordts S, Broadhvest J, Dresselhaus T. 2005. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science, 307 (5709):573-576.
pmid: 15681383
|
[57] |
Matsumoto D, Tao R. 2016. Recognition of a wide-range of S-RNases by S locus F-box like 2,a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. Plant Molecular Biology, 91 (4):459-469.
doi: 10.1007/s11103-016-0479-2
URL
|
[58] |
Matsumoto D, Tao R. 2019. Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. Plant Molecular Biology, 100 (4):367-378.
doi: 10.1007/s11103-019-00860-8
|
[59] |
Maune J F, Camadro E L, Erazzú L E. 2018. Cross-incompatibility and self-incompatibility:unrelated phenomena in wild and cultivated potatoes? Botany, 96 (1):33-45.
|
[60] |
Mecchia M A, Santos-Fernandez G, Duss N N, Somoza S C, Boisson-Dernier A, Gagliardini V, Martínez-Bernardini A, Fabrice T N, Ringli C, Muschietti J P. 2017. RALF4/ 19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science, 358 (6370):1600-1603.
doi: 10.1126/science.aao5467
pmid: 29242232
|
[61] |
Moran Lauter A N, Muszynski M G, Huffman R D, Scott M P. 2017. A pectin methylesterase ZmPme 3 is expressed in Gametophyte factor1-s (Ga1-s) silks and maps to that locus in maize ( Zea mays L.). Frontiers in Plant Science,doi: 10.3389/fpls.2017.01926.
|
[62] |
Moreira-Hernández J I, Muchhala N. 2019. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annual Review of Ecology,Evolution,and Systematics, 50:191-217.
doi: 10.1146/ecolsys.2019.50.issue-1
URL
|
[63] |
Müller L M, Lindner H, Pires N D, Gagliardini V, Grossniklaus U. 2016. A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis. Nature Communications, 7 (1):1-10.
|
[64] |
Muñoz-Sanz J V, Zuriaga E, Cruz-García F, McClure B, Romero C. 2020. Self-(in) compatibility systems:target traits for crop-production,plant breeding,and biotechnology. Frontiers in Plant Science,doi: 10.3389/fpls.2020.00195.
|
[65] |
Murfett J, Strabala T J, Zurek D M, Mou B, Beecher B, McClure B A. 1996. S-RNase and interspecific pollen rejection in the genus Nicotiana:multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. The Plant Cell, 8 (6):943-958.
pmid: 12239407
|
[66] |
Nasrallah J B. 2002. Recognition and rejection of self in plant reproduction. Science, 296 (5566):305-308.
pmid: 11951033
|
[67] |
Nasrallah J B. 2019. Self-incompatibility in the Brassicaceae:regulation and mechanism of self-recognition. Current Topics in Developmental Biology, 131:435-452.
doi: S0070-2153(18)30073-5
pmid: 30612626
|
[68] |
Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara R D, Hamamura Y, Mizukami A, Susaki D. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature, 458 (7236):357-361.
doi: 10.1038/nature07882
|
[69] |
Qin X, Chetelat R T. 2021. Ornithine decarboxylase genes contribute to S-RNase-independent pollen rejection. Plant Physiology, 186 (1): 452-468.
doi: 10.1093/plphys/kiab062
pmid: 33576789
|
[70] |
Qin X Q, Li W T, Liu Y, Tan M L, Ganal M, Chetelat R T. 2018. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. Plant Journal, 93 (3):417-430.
doi: 10.1111/tpj.2018.93.issue-3
URL
|
[71] |
Qin Y, Leydon A R, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson M A, Palanivelu R. 2009. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes,pointing to genes critical for growth in a pistil. PLoS Genet,doi: 10.1371/journal.pgen.1000621.
|
[72] |
Quilichini T D, Grienenberger E, Douglas C J. 2015. The biosynthesis,composition and assembly of the outer pollen wall:a tough case to crack. Phytochemistry, 113:170-182.
doi: 10.1016/j.phytochem.2014.05.002
pmid: 24906292
|
[73] |
Reimann R, Kah D, Mark C, Dettmer J, Reimann T M, Gerum R C, Geitmann A, Fabry B, Dietrich P, Kost B. 2020. Durotropic growth of pollen tubes. Plant Physiology, 183 (2):558-569.
doi: 10.1104/pp.19.01505
pmid: 32241878
|
[74] |
Rejon J D, Delalande F, Schaeffer-Reiss C, Alche J D, Rodriguez-Garcia M I, van Dorsselaer A, Castro A J. 2016. The pollen coat proteome:at the cutting edge of plant reproduction. Proteomes,doi: 10.3390/proteomes4010005.
|
[75] |
Schemske D W. 2010. Adaptation and the origin of species. The American Naturalist, 176 (S1):S4-S25.
doi: 10.1086/657060
URL
|
[76] |
Schluter D, Rieseberg L H. 2022. Three problems in the genetics of speciation by selection. Proceedings of the National Academy of Sciences,doi: 10.1073/pnas.2122153119.
|
[77] |
Schultz C J, Hauser K, Lind J L, Atkinson A H, Pu Z Y, Anderson M A, Clarke A E. 1997. Molecular characterisation of a cDNA sequence encoding the backbone of a style-specific 120 kDa glycoprotein which has features of both extensins and arabinogalactan proteins. Plant Molecular Biology, 35 (6):833-845.
pmid: 9426603
|
[78] |
Shi J, Cui M, Yang L, Kim Y J, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 20 (11):741-753.
doi: S1360-1385(15)00201-0
pmid: 26442683
|
[79] |
Shi Liting, Zhou Xinyang, Ye Jianfeng, Zhou Jiahao, Wang Gang, Xia Guohua. 2021. Advances in remote hybridization breeding of woody ornamental plants. Acta Horticulturae Sinica, 48 (9):1827-1838. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0565
URL
|
|
施丽婷, 周鑫洋, 叶建丰, 周家豪, 王刚, 夏国华. 2021. 木本观赏植物远缘杂交育种研究进展. 园艺学报, 48 (9):1827-1838.
doi: 10.16420/j.issn.0513-353x.2020-0565
URL
|
[80] |
Shimizu K K, Tsuchimatsu T. 2015. Evolution of selfing:recurrent patterns in molecular adaptation. Annual Review of Ecology,Evolution,and Systematics, 46:593-622.
doi: 10.1146/ecolsys.2015.46.issue-1
URL
|
[81] |
Stone S L, Anderson E M, Mullen R T, Goring D R. 2003. ARC 1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 15 (4):885-898.
doi: 10.1105/tpc.009845
URL
|
[82] |
Sonneveld T, Tobutt K R, Vaughan S P, Robbins T P. 2005. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-Box gene. Plant Cell, 17 (1):37-51.
pmid: 15598801
|
[83] |
Takada Y, Murase K, Shimosato-Asano H, Sato T, Nakanishi H, Suwabe K, Shimizu K K, Lim Y P, Takayama S, Suzuki G. 2017. Duplicated pollen-pistil recognition loci control intraspecific unilateral incompatibility in Brassica rapa. Nature Plants, 3 (7):1-7.
|
[84] |
|
[85] |
Thorogood D, Yates S, Manzanares C, Skot L, Hegarty M, Blackmore T, Barth S, Studer B. 2017. A novel multivariate approach to phenotyping and association mapping of multi-locus gametophytic self-incompatibility reveals S,Z,and other loci in a perennial ryegrass (Poaceae) population. Frontiers in Plant Science,doi: 10.3389/fpls.2017.01331.
|
[86] |
Tovar-Méndez A, Lu L, McClure B. 2017. HT proteins contribute to S-Rnase-independent pollen rejection in Solanum. The Plant Journal, 89 (4):718-729.
doi: 10.1111/tpj.13416
pmid: 27862494
|
[87] |
Tovar-Méndez A, Kumar A, Kondo K, Ashford A, Baek Y S, Welch L, Bedinger P A, McClure B A. 2014. Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species. The Plant Journal, 77 (5):727-736.
doi: 10.1111/tpj.12424
pmid: 24387692
|
[88] |
Udagawa H, Ishimaru Y, Li F, Sato Y, Kitashiba H, Nishio T. 2010. Genetic analysis of interspecific incompatibility in Brassica rapa. Theoretical and Applied Genetics, 121 (4):689-696.
doi: 10.1007/s00122-010-1340-7
pmid: 20414635
|
[89] |
Valdivia E R, Stephenson A G, Durachko D M, Cosgrove D. 2009. Class B β-expansins are needed for pollen separation and stigma penetration. Sex. Plant Reprod, 22 (3):141-152.
doi: 10.1007/s00497-009-0099-y
pmid: 20033435
|
[90] |
Wang L, Clarke L A, Eason R J, Parker C C, Qi B, Scott R J, Doughty J. 2017. PCP‐B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. New Phytologist, 213 (2):764-777.
doi: 10.1111/nph.2017.213.issue-2
URL
|
[91] |
Wang L, Lin Z, Carli J, Gladala-Kostarz A, Davies J M, Franklin-Tong V E, Bosch M. 2022a. ATP depletion plays a pivotal role in self-incompatibility,revealing a link between cellular energy status,cytosolic acidification and actin remodelling in pollen tubes. New Phytologist. 236 (1):1691-1707
doi: 10.1111/nph.v236.5
URL
|
[92] |
Wang Y, Li W, Wang L, Yan J, Lu G, Yang N, Xu J, Wang Y, Gui S, Chen G. 2022b. Three types of genes underlying the Gametophyte factor 1 locus cause unilateral cross incompatibility in maize. Nature Communications, 13 (1):1-12.
doi: 10.1038/s41467-021-27699-2
|
[93] |
Wilkins K A, Poulter N S, Franklin-Tong V E. 2014. Taking one for the team:self-recognition and cell suicide in pollen. Journal of Experimental Botany, 65 (5):1331-1342.
doi: 10.1093/jxb/ert468
pmid: 24449385
|
[94] |
Woriedh M, Wolf S, Marton M L, Hinze A, Gahrtz M, Becker D, Dresselhaus T. 2013. External application of gametophyte specific ZmPMEI 1 induces pollen tube burst in maize. Plant Reproduction, 26 (3):255-266.
doi: 10.1007/s00497-013-0221-z
pmid: 23824238
|
[95] |
Wu H-m, Wang H, Cheung A Y. 1995. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell, 82 (3):395-403.
pmid: 7634329
|
[96] |
Zhang C C, Wang L Y, Wei K, Wu L Y, Li H L, Zhang F, Cheng H, Ni D J. 2016. Transcriptome analysis reveals self-incompatibility in the tea plant(Camellia sinensis)might be under gametophytic control. BMC Genomics, 17 (1):1-15.
|
[97] |
Zhang L, Liu Y, Wei G, Lei T, Wu J, Zheng L, Ma H, He G, Wang N. 2022. POLLEN WALL ABORTION 1 is essential for pollen wall development in rice. Plant Physiology, 190 (4):2229-2245.
doi: 10.1093/plphys/kiac435
pmid: 36111856
|
[98] |
Zhang L L, Huang J B, Su S Q, Wei X C, Yang L, Zhao H H, Yu J Q, Wang J, Hui J Y, Hao S Y, Song S S, Cao Y Y, Wang M S, Zhang X W, Zhao Y Y, Wang Z Y, Zeng W Q, WU H M, Yuan Y X, Zhang X S, Cheung A, Duan Q H. 2021. FERONIA receptorkinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology, 31 (14):3004-3016.
doi: 10.1016/j.cub.2021.04.060
URL
|
[99] |
Zhang Qingwen, Wang Zhaohao, Qi Jingjing, Xie Yu, Lei Tiangang, He Yongrui, Chen Shanchun, Yao Lixiao. 2021. The advances of callose synthase in plant. Acta Horticulturae Sinica, 48 (4):661-675. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0379
|
|
张庆雯, 王兆昊, 祁静静, 谢宇, 雷天刚, 何永睿, 陈善春, 姚利晓. 2021. 植物胼胝质合成酶的研究进展. 园艺学报, 48 (4):661-675.
doi: 10.16420/j.issn.0513-353x.2020-0379
|
[100] |
Zhang Z, Zhang B, Chen Z, Zhang D, Zhang H, Wang H, Zhang Y, Cai D, Liu J, Xiao S. 2018. A PECTIN METHYLESTERASE gene at the maize Ga 1 locus confers male function in unilateral cross-incompatibility. Nature Communications, 9 (1):1-9.
doi: 10.1038/s41467-017-02088-w
|
[101] |
Zhong S, Liu M, Wang Z, Huang Q, Hou S, Xu Y C, Ge Z, Song Z, Huang J, Qiu X. 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science,doi: 10.1126/science.aau9564.
|
[102] |
Zinkl G M, Zwiebel B I, Grier D G, Preuss D. 1999. Pollen-stigma adhesion in Arabidopsis:a speciesspecific interaction mediated by lipophilic molecules in the pollen exine. Development, 126 (23):5431-5440.
doi: 10.1242/dev.126.23.5431
pmid: 10556067
|
[103] |
Zonia L, Cordeiro S, Tupý J, Feijó J A. 2002. Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetra kis phosphate. The Plant Cell, 14 (9):2233-2249.
doi: 10.1105/tpc.003830
URL
|