http://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
http://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
http://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
http://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
http://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
http://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
http://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
http://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
http://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
http://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
http://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
http://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2020, Vol. 47 ›› Issue (12): 2277-2289.doi: 10.16420/j.issn.0513-353x.2020-0418

• Research Papers •     Next Articles

Effects of Low Temperature Storage on Energy Metabolism,Related Physiology and Quality in‘Jinhong’Apple Fruit

WANG Zhihua*,JIA Chaoshuang*,WANG Wenhui,TONG Wei,and JIANG Yunbin   

  1. Research Institute of Pomology,Chinese Academy of Agricultural Sciences/Fruit Storage and Processing Key Laboratory of Liaoning Province,Xingcheng,Liaoning 125100,China
  • Online:2020-12-25 Published:2021-01-06

Abstract: In order to investigate the effect of low temperature storage on energy metabolism and physiological quality of‘Jinhong’apple fruit,‘Jinhong’apple fruit were stored at low temperature conditions of–2,0,2 and 4 ℃,and the energy-related substance was regularly measured such as adenosine triphosphate(ATP),adenosine diphosphate(ADP),adenosine monophosphate(AMP)content,energy charge(EC)and H+-ATPase,Ca2+-ATPase, succinate dehydrogenase(SDH)and cytochrome oxidase (CCO),superoxide dismutase(SOD)and other related enzyme activities. At the same time we measured the fruit respiration intensity,ethylene release,fruit hardness,vitamin C,titratable acid,soluble solids content and other physiological quality indicators,and investigated the fruit tissue browning index. The results showed that the ATP,ADP and AXP contents,EC and energy-related metabolic enzyme except Ca2+-ATPase activities,SOD activity and ethylene release of fruits stored at–2 ℃ were kept to the lowest throughout storage and shelf life,and the vitamin C content decreased rapidly in the later period. The fruit hardness,soluble solids content and titratable acid content remained the lowest at 4 ℃.The browning index of fruit at–2 ℃ was the highest(both skin and flesh were severely browned),the skin and flesh of the fruit stored at 0 ℃ had slight browning,and the fruit stored at 2 and 4 ℃ had no browning. During storage of 30,45,90 d,90 d + 3 d shelf life and 90 d + 5 d shelf life,fruit stored at 2 ℃ maintained higher energy levels,and fruit quality and flavor remained well,followed by fruit at 0 ℃. The results showed that there was a close relationship between tissue browning and energy deficit. The more energy deficit,the more serious browning. Appropriate low temperature can maintain a higher energy charge level of the fruit,while inhibiting pericarp browning,maintaining fruit storage quality,and delaying fruit senescence.

Key words: apple, low storage, enzyme, energy level, pericarp browning, quality

CLC Number: