https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (1): 203-212.doi: 10.16420/j.issn.0513-353x.2023-0170

• Plant Protection • Previous Articles     Next Articles

Genetic Variability and Host Adaption of Cymbidium Mosaic Virus

GUAN Xiayu1,2, CHEN Xihong3, GUO Jing3, LÜ Haoyang1, LIANG Chenyuan1, GAO Fangluan1,*()   

  1. 1 Key Lab for Biopesticide and Chemical Biology,Ministry of Education,Fujian Agriculture and Forestry University,Fuzhou 350002,China
    2 School of Horticulture,Fujian Agriculture and Forestry University,Fuzhou 350002,China
    3 Fujian Key Laboratory of Inspection and Quarantine Technology Research, Technology Center of Fuzhou Customs District,Fuzhou 350001,China
  • Received:2023-05-11 Revised:2023-08-30 Online:2024-01-25 Published:2024-01-16
  • Contact: (E-mail:raindy@fafu.edu.cn

Abstract:

Cymbidium mosaic virus(CymMV)is a highly destructive plant pathogen that inflicts significant losses on orchid production. This study investigates the genetic variability and adaptive evolution of CymMV. The coat protein(CP)gene of 16 CymMV isolates from Dendrobium nobile was sequenced and analyzed alongside published CP sequences of 52 CymMV isolates from various host plants in China. Analysis reveals a substantial genetic diversity within the CP gene,with an overall nucleotide diversity of 0.039 and a haplotype diversity of 0.992. AMOVA tests demonstrate that the molecular variation among individuals accounts for 71.72% of the total variation of CymMV. Population structure analysis classifies CymMV into two distinct clusters. Cluster 1 exclusively consists of CymMV isolates from Cymbidium ensifolium,while Cluster 2 encompasses CymMV isolates from multiple host species,yet isolates from the same host species tend to form subclusters. Furthermore,a robust association between the phylogeny and host species of CymMV is revealed through phylogeny-trait association analysis. Overall,the findings of this study indicate that the genetic variation of CymMV is specific to its host species,suggesting that its evolution is primarily driven by selection pressures imposed by its hosts.

Key words: Cymbidium mosaic virus, coat protein gene, genetic diversity, discriminant analysis of principal components, adaptive evolution