| [1] |
Batlle I, Fontich C, Lozano L, Iglesias I, Reig G, Alegre S, Echeverría G, De Herralde F, Claveria E, Dolcet-Sanjuan R, Carbó J, Bonany J, Maillard A, Maillard L. 2012. The peach breeding programme IRTA-ASF:aiming for high fruit quality. Acta Horticulturae,(940):75-78.
|
| [2] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools:an integrative Toolkit developed for interactive analyses of big biological data. Molecular Plant,13:1194-1202.
|
| [3] |
Chen H, Yu H, Jiang W, Li H, Wu T, Chu J, Xin P, Li Z, Wang R, Zhou T, Huang K, Lu L, Bian M, Du X. 2021. Overexpression of ovate family protein 22 confers multiple morphological changes and represses gibberellin and brassinosteroid signalings in transgenic rice. Plant Science,304:110734.
|
| [4] |
Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D, Pastuglia M. 2012. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. The Plant Cell,24:178-191.
|
| [5] |
Guan J, Xu Y, Yu Y, Fu J, Ren F, Guo J, Zhao J, Jiang Q, Wei J, Xie H. 2021. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biology,22:13.
|
| [6] |
Guo J, Cao K, Deng C C L, Li Y, Zhu G R, Fang W C, Chen C W, Wang X W, Wu J L, Guan L P, Wu S, Guo W W, Yao J L, Fei Z J, Wang L R. 2020. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biology,21:258.
|
| [7] |
Hackbusch J, Richter K, Müller J, Salamini F, Uhrig J F. 2005. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences of the United States of America,102:4908-4912.
|
| [8] |
Lee Y K, Kim G T, Kim I J, Park J, Kwak S S, Choi G, Chung W I. 2006. LONGIFOLIA1 and LONGIFOLIA2,two homologous genes,regulate longitudinal cell elongation in Arabidopsis. Development,133:4305-4314.
|
| [9] |
Li E Y, Wang S C, Liu Y Y, Chen J G, Douglas C J. 2011. OVATE FAMILY PROTEIN4(OFP4)interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana. Plant Journal,67:328-341.
|
| [10] |
Li Y, Cao K, Li N, Zhu G R, Fang W C, Chen C W, Wang X W, Guo J, Wang Q, Ding T Y. 2021. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research,31:592-606.
|
| [11] |
Schmitz A J, Begcy K, Sarath G, Walia H. 2015. Rice Ovate Family Protein 2(OFP2)alters hormonal homeostasis and vasculature development. Plant Science,241:177-188.
|
| [12] |
Serin E a R, Nijveen H, Hilhorst H W M, Ligterink W. 2016. Learning from co-expression networks:possibilities and challenges. Frontiers in Plant Science,7:444.
|
| [13] |
Stuart J M, Segal E, Koller D, Kim S K. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science,302:249-255.
|
| [14] |
Sun X X, Ma Y M, Yang C, Li J X. 2020. Rice OVATE family protein 6 regulates leaf angle by modulating secondary cell wall biosynthesis. Plant Molecular Biology,104:249-261.
|
| [15] |
Wang S, Chang Y, Guo J, Chen J G. 2007. Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant Journal,50:858-872.
|
| [16] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics,47:949-954.
|
| [17] |
Wu S, Zhang B Y, Keyhaninejad N, Rodríguez G R, Kim H J, Chakrabarti M, Illa-Berenguer E, Taitano N K, Gonzalo M J, Díaz A, Pan Y P, Leisner C P, Halterman D, Buell C R, Weng Y Q, Jansky S H, Van Eck H, Willemsen J, Monforte A J, Meulia T, van der Knaap E. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications,9:4734.
|
| [18] |
Wu Y D, Wang Y, Fan X C, Zhang Y, Jiang J F, Sun L, Luo Q, Sun F, Liu C H. 2023. QTL mapping for berry shape based on a high-density genetic map constructed by whole-genome resequencing in grape. Horticultural Plant Journal, 9 (4):729-742.
|
| [19] |
Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. 2017. Brassinosteroids regulate OFP1,a DLT interacting protein,to modulate plant architecture and grain morphology in rice. Frontiers in Plant Science,8:1698.
|
| [20] |
Xu Yaoguang, Zhang Zhengquan, Yu Yang, Guan Jiantao, Xie Hua. 2022. Identification and expression analysis of AQP gene family members in peach(Prunus persica). Journal of Agricultural Biotechnology, 30 (7):1303-1313. (in Chinese)
|
|
徐摇光, 张政权, 于洋, 官健涛, 谢华. 2022. 桃AQP基因家族成员的鉴定与表达分析. 农业生物技术学报, 30 (7):1303-1313.
|
| [21] |
Yang C, Ma Y M, He Y, Tian Z H, Li J X. 2018. OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling. The Plant Journal,93:489-501.
|
| [22] |
Zhang B, Li Q, Keyhaninejad N, Taitano N, Sapkota M, Snouffer A, Van Der Knaap E. 2023. A combinatorial TRM‐OFP module bilaterally fine‐tunes tomato fruit shape. New Phytologist,238:2393-2409.
|
| [23] |
Zhang X, Wu J, Yu Q, Liu R, Wang Z Y, Sun Y. 2020. AtOFPs regulate cell elongation by modulating microtubule orientation via direct interaction with TONNEAU2. Plant Science,292:110405.
|
| [24] |
Zhou H, Ma R, Gao L, Zhang J, Zhang A, Zhang X, Ren F, Zhang W, Liao L, Yang Q, Xu S, Otieno Ogutu C, Zhao J, Yu M, Jiang Q, Korban S S, Han Y. 2020. A 1.7‐Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. Plant Biotechnology Journal,19:192-205.
|