Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (5): 972-984.doi: 10.16420/j.issn.0513-353x.2022-0329
• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles Next Articles
XU Lanlan, ZHAO Tianzi, ZHANG Wei, ZONG Chen, HUANG Feiyi, WANG Jianjun, HOU Xilin, LI Ying()
Received:
2022-11-28
Revised:
2023-02-27
Online:
2023-05-25
Published:
2023-05-31
Contact:
LI Ying
E-mail:yingli@njau.edu.cn
CLC Number:
XU Lanlan, ZHAO Tianzi, ZHANG Wei, ZONG Chen, HUANG Feiyi, WANG Jianjun, HOU Xilin, LI Ying. Function Analysis of BcMAX2 in Regulating Axillary Bud Growth in Brassica campestris ssp. chinensis[J]. Acta Horticulturae Sinica, 2023, 50(5): 972-984.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0329
引物名称 | 引物序列(5′-3′) | 用途 |
---|---|---|
Primer name | Primer sequence | Usage |
BcMAX2 | F:ATGGCTTCCACCACTCTCTGC | ORF扩增 |
R:TCAGTCAATGATGATGCGGCT | Complete ORF amplification | |
BcMAX2-P | F:TTCAACCGAATCAATCCACTATTCT | 启动子扩增 |
R:CTCCAAGATTTGCTCTCATGGCTTCCAC | Complete promoter amplification | |
pRI101-BcMAX2 | F:TTCTTCACTGTTGATACATATGATGGCTTCCACCACTCTCTGC | 载体构建 |
R:TCGCCCTTGCTCACCATGGATCCTCAGTCAATGATGATGCGGCT | Construct of vector | |
RT-BcMAX2 | F:AGGAGCTTGTGCTTGACGTT | RT-PCR |
R:AAGACAGCGACAACAACCCT | ||
Actin1 | F:GGAGCTGAGAGATTCCGTTG | 白菜内参基因 |
R:GAACCACCACTGAGGACGAT | Internal reference gene in Brassica | |
Actin2 | F:TTGACAATTGATGCAAACAATGACG | 拟南芥内参基因 |
R:CCATTGCTTAATTCCACGGACAAAC | Internal reference genein Arabidopsis | |
BcMAX2-BD | F:GGAATTCCATATGATGGCTTCCACCACTCTCTGC | 诱饵载体构建 |
R:GGAATTCGTCAATGATGATGCGGCT | Construct of bait vector | |
BcNF-YC4-AD | F:CATATGGCCATGGAGGCCAGTGAATTCATGGACAACAACAACCAGCA | 载体构建 |
R:ATCTGCAGCTCGAGCTCGATGGATCCGGAAGCAAGCTCATTACTAGT | Construct of vector | |
BcCEBiP-AD | F:CATATGGCCATGGAGGCCAGTGAATTCATGGAAACTTCCCGTTTTACCC | 载体构建 |
R:ATCTGCAGCTCGAGCTCGATGGATCCGGGAGAAGGCATGCACAGAAC | Construct of vector | |
BcBOLA-AD | F:CATATGGCCATGGAGGCCAGTGAATTCATGGAGGAGACAGATCGTTCA GATCGTTC | 载体构建 Construct of vector |
R:ATCTGCAGCTCGAGCTCGATGGATCCGGGATGGGAATGTCTTGATGGG | ||
AD | F:CTATTCGATGATGAAGATACCCCACCAAACCC | cDNA插入片段扩增 |
R:GTGAACTTGCGGGGTTTTTCAGTATCTACGATT | Amplification of cDNA fragments | |
pCAMBIA1300-35S -NYFP-BcNF-YC4 | F:GAATTCATGGACAACAACAACCAGCA | BiFC载体构建 |
R:GTCGACAAGCAAGCTCATTACTAGT | Construct of vector BiFC | |
pCAMBIA1300-35S -NYFP-BcCEBiP | F:GGATCCATGGAAACTTCCCGTTTTACCC | BiFC载体构建 |
R:ACTAGTGAGAAGGCATGCACAGAAC | Construct of vector BiFC | |
pCAMBIA1300-35S -NYFP-BcBOLA | F:GGATCCATGGAGGAGACAGATCGTTC | BiFC载体构建 |
R:ACTAGTGATGGGAATGTCTTGATGGG | Construct of vector BiFC | |
pCAMBIA1300-35S -CYFP-BcMAX2 | F:GAATTCATGGCTTCCACCACTCTCTGC | BiFC载体构建 |
R:GTCGACGGTCAATGATGATGCGGCT | Construct of vector BiFC |
Table 1 Primer sequences of PCR amplification
引物名称 | 引物序列(5′-3′) | 用途 |
---|---|---|
Primer name | Primer sequence | Usage |
BcMAX2 | F:ATGGCTTCCACCACTCTCTGC | ORF扩增 |
R:TCAGTCAATGATGATGCGGCT | Complete ORF amplification | |
BcMAX2-P | F:TTCAACCGAATCAATCCACTATTCT | 启动子扩增 |
R:CTCCAAGATTTGCTCTCATGGCTTCCAC | Complete promoter amplification | |
pRI101-BcMAX2 | F:TTCTTCACTGTTGATACATATGATGGCTTCCACCACTCTCTGC | 载体构建 |
R:TCGCCCTTGCTCACCATGGATCCTCAGTCAATGATGATGCGGCT | Construct of vector | |
RT-BcMAX2 | F:AGGAGCTTGTGCTTGACGTT | RT-PCR |
R:AAGACAGCGACAACAACCCT | ||
Actin1 | F:GGAGCTGAGAGATTCCGTTG | 白菜内参基因 |
R:GAACCACCACTGAGGACGAT | Internal reference gene in Brassica | |
Actin2 | F:TTGACAATTGATGCAAACAATGACG | 拟南芥内参基因 |
R:CCATTGCTTAATTCCACGGACAAAC | Internal reference genein Arabidopsis | |
BcMAX2-BD | F:GGAATTCCATATGATGGCTTCCACCACTCTCTGC | 诱饵载体构建 |
R:GGAATTCGTCAATGATGATGCGGCT | Construct of bait vector | |
BcNF-YC4-AD | F:CATATGGCCATGGAGGCCAGTGAATTCATGGACAACAACAACCAGCA | 载体构建 |
R:ATCTGCAGCTCGAGCTCGATGGATCCGGAAGCAAGCTCATTACTAGT | Construct of vector | |
BcCEBiP-AD | F:CATATGGCCATGGAGGCCAGTGAATTCATGGAAACTTCCCGTTTTACCC | 载体构建 |
R:ATCTGCAGCTCGAGCTCGATGGATCCGGGAGAAGGCATGCACAGAAC | Construct of vector | |
BcBOLA-AD | F:CATATGGCCATGGAGGCCAGTGAATTCATGGAGGAGACAGATCGTTCA GATCGTTC | 载体构建 Construct of vector |
R:ATCTGCAGCTCGAGCTCGATGGATCCGGGATGGGAATGTCTTGATGGG | ||
AD | F:CTATTCGATGATGAAGATACCCCACCAAACCC | cDNA插入片段扩增 |
R:GTGAACTTGCGGGGTTTTTCAGTATCTACGATT | Amplification of cDNA fragments | |
pCAMBIA1300-35S -NYFP-BcNF-YC4 | F:GAATTCATGGACAACAACAACCAGCA | BiFC载体构建 |
R:GTCGACAAGCAAGCTCATTACTAGT | Construct of vector BiFC | |
pCAMBIA1300-35S -NYFP-BcCEBiP | F:GGATCCATGGAAACTTCCCGTTTTACCC | BiFC载体构建 |
R:ACTAGTGAGAAGGCATGCACAGAAC | Construct of vector BiFC | |
pCAMBIA1300-35S -NYFP-BcBOLA | F:GGATCCATGGAGGAGACAGATCGTTC | BiFC载体构建 |
R:ACTAGTGATGGGAATGTCTTGATGGG | Construct of vector BiFC | |
pCAMBIA1300-35S -CYFP-BcMAX2 | F:GAATTCATGGCTTCCACCACTCTCTGC | BiFC载体构建 |
R:GTCGACGGTCAATGATGATGCGGCT | Construct of vector BiFC |
[1] |
Aguilar-Martínez J A, Poza-Carrión C, Cubas P. 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell, 19 (2):458-472.
doi: 10.1105/tpc.106.048934 URL |
[2] |
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. 2009. d14,a strigolactone-insensitive mutant of rice,shows an accelerated outgrowth of tillers. Plant and Cell Physiology, 50 (8):1416-1424.
doi: 10.1093/pcp/pcp091 URL |
[3] |
Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. 2006. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 16 (6):553-563.
doi: 10.1016/j.cub.2006.01.058 pmid: 16546078 |
[4] | Bian Hai-yan, Zhong Qi-wen, Huang Si-jie, Wang Li-hui, Yang Shi-peng, Tian Jie. 2018. Analysis of gene expressions of fructan metabolism key enzymes in garlic under drought stress. Molecular Plant Breeding, 16 (20):6770-6776. (in Chinese) |
边海燕, 钟启文, 黄思杰, 王丽慧, 杨世鹏, 田洁. 2018. 干旱胁迫下大蒜果聚糖代谢关键酶基因的表达分析. 分子植物育种, 16 (20):6770-6776. | |
[5] |
Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. 2005. MAX1 encodes a cytochrome P 450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell, 8 (3):443-449.
doi: 10.1016/j.devcel.2005.01.009 URL |
[6] |
Braun N, Germain A D S, Pillot J P, Stephanie B M, Dalmais M, Antoniadi I, Li X, Alessandra M G, Signor C L, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C. 2012. The pea TCP transcription factor PsBRC 1 acts downstream of strigolactones to control shoot branching. Plant Physiology, 158 (1):225-238.
doi: 10.1104/pp.111.182725 pmid: 22045922 |
[7] |
Carolien R S, Salim A B, Krol S D V, Bouwmeester H. 2013. The biology of strigolactones. Trends in Plant Science, 18 (2):72-83.
doi: 10.1016/j.tplants.2012.10.003 URL |
[8] | Cao Xue-wei. 2016. The formation mechanism and candidate gene identification of tillering in non-heading Chinese cabbage[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
曹学伟. 2016. 不结球白菜分枝性状的发生机理及其候选基因挖掘[博士论文]. 南京: 南京农业大学. | |
[9] |
Chen X M, Shi X Y, Ai Q, Han J Y, Wang H S, Fu Q S. 2022. Transcriptomic and metabolomic analyses reveal that exogenous strigolactones alleviate the response of melon root to cadmium stress. Horticultural Plant Journal, 8 (5):637-649.
doi: 10.1016/j.hpj.2022.07.001 URL |
[10] |
Cheng X, Ruyter-Spira C, Bouwmeester H. 2013. The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 4:199.
doi: 10.3389/fpls.2013.00199 pmid: 23785379 |
[11] | Cui Hong-mi. 2016. Study on the main influence factors of non-heading Chinese cabbage tillering[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
崔红米. 2016. 影响不结球白菜分枝性状的主要因素探讨[硕士论文]. 南京: 南京农业大学. | |
[12] | Domagalska M A, Leyser O. 2011. Signal integration in the control of shoot branching. Nature Reviews. Molecular Cell Biology, 12 (4):211-221. |
[13] |
Ferrero M, Pagliarani C, Novák O, Ferrandino A, Cardinale F, Visentin I. 2018. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. J Exp Bot, 69:2391-2401.
doi: 10.1093/jxb/ery033 pmid: 29401281 |
[14] |
Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C. 2008. Strigolactone inhibition of shoot branching. Nature, 455 (7210):189-194.
doi: 10.1038/nature07271 |
[15] |
Hamiaux C, Drummond R S M, Janssen B J, Ledger S E, Cooney J M, Newcomb R D, Snowden K C. 2012. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone,strigolactone. Current Biology, 22 (21):2032-2036.
doi: 10.1016/j.cub.2012.08.007 pmid: 22959345 |
[16] | Hou Xilin, Li Ying, Huang Feiyi. 2020. Advances in molecular biology of main characters and breeding technology in non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Acta Horticulturae Sinica, 47 (9):1663-1677. (in Chinese) |
侯喜林, 李英, 黄菲艺. 2020. 不结球白菜(Brassica campestris ssp. chinensis)主要性状及育种技术的分子生物学研究新进展. 园艺学报, 47 (9):1663-1677. | |
[17] | Hu J, Ji Y Y, Hu X T, Sun S Y, Wang X L. 2020. BES1 functions as the co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Communications, 1 (3):30-41. |
[18] |
Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Hong Y, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu H S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 504 (7480):401-405.
doi: 10.1038/nature12870 |
[19] |
Johnson X, Brcich T, Dun E A, Goussot M, Haurogné K, Beveridge C A, Rameau C. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiology, 142 (3):1014-1026.
doi: 10.1104/pp.106.087676 pmid: 16980559 |
[20] | Li Ju. 2015. Expression analysis of TCP family transcription factor genes BcBRC1 and tillering traits genetic analysis in non-heading Chinese cabbage[M. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
李菊. 2015. 不结球白菜TCP家族转录因子基因BcBRC1的表达分析及分枝性状遗传分析[硕士论文]. 南京: 南京农业大学. | |
[21] | Li Z D, Li Y, Liu T K, Zhang C W, Xiao D, Hou X L. 2022. Non-heading Chinese cabbage database:an open-access platform for the genomics of Brassica campestris(syn. Brassica rapa)ssp. chinensis. Plants, 11 (8):101596181. |
[22] | Seale M, Bennett T, Leyser O. 2017. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development, 144 (9):1661-1673. |
[23] |
Shen R X, Ma X L, Wang H Y. 2020. SMXL6/7/8 :Dual-function transcriptional repressors of strigolactone signaling. Molecular Plant, 13 (9):1244-1246.
doi: 10.1016/j.molp.2020.08.002 URL |
[24] |
Snowden K C, Simkin A J, Janssen B J, Templeton K R, Loucas H M, Simons J L, Karunairetnam S, Gleave A P, Klee C H J. 2005. The DECREASED APICAL DOMINANCE1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence,root growth,and flower development. The Plant cell, 17 (3):746-759.
doi: 10.1105/tpc.104.027714 URL |
[25] |
Stirnberg P, Furner I J, Leyseret H M O. 2007. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. The Plant Journal, 50 (1):80-94.
doi: 10.1111/j.1365-313X.2007.03032.x URL |
[26] |
Stirnberg P, van de Sande K, Leyser H M. 2002. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129 (5):1131-1141.
doi: 10.1242/dev.129.5.1131 pmid: 11874909 |
[27] |
Soundappan I, Bennett T, Morffy N, Liang Y, Nelson D C. 2015. SMAX1-LIKE/D 53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. The Plant Cell, 27 (11):3143-3159.
doi: 10.1105/tpc.15.00562 pmid: 26546447 |
[28] |
Sun W J, Ji X L, Song L Q, Wang X F, You C X, Hao Y J. 2021. Functional identification of MdSMXL8.2,the homologous gene of strigolactones pathway repressor protein gene in Malus × domestica. Horticultural Plant Journal, 7 (4):275-285.
doi: 10.1016/j.hpj.2021.01.001 URL |
[29] |
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Noriko T K, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455 (7210):195-200.
doi: 10.1038/nature07272 |
[30] |
Wang L, Wang B, Jiang L, Liu X, Li J Y. 2015. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. The Plant cell, 27 (11):3128-3142.
doi: 10.1105/tpc.15.00605 pmid: 26546446 |
[31] |
Wang L, Wang B, Yu H, Guo H Y, Lin T, Kou L Q, Wang A Q, Shao N, Ma H Y, Xiong G S, Li X Q, Yang J, Chu J F, Li J Y. 2020. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 583 (7815):277-281.
doi: 10.1038/s41586-020-2382-x |
[32] |
Wang H W, Chen W X, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei M R, Seiler C, Sreenivasulu N, Wirén N V, Kuhlmann M. 2018. Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 69 (16):3883-3898.
doi: 10.1093/jxb/ery200 pmid: 29982677 |
[33] |
Waters M T, Brewer P B, Bussel J D, Smith S M, Beveridge C A. 2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology, 159 (3):1073-1085.
doi: 10.1104/pp.112.196253 pmid: 22623516 |
[34] | Yang Xue-dong, Dai Wei, Zhang Chang-wei, Wang Jin-yan, Kong Min, Hou Xi-lin. 2012. The technology system establishment of VIGS in non-heading Chinese cabbage. Acta Horticulturae Sinica, 39 (11):2168-2174. (in Chinese) |
杨学东, 戴薇, 张昌伟, 王金彦, 孔敏, 侯喜林. 2012. 白菜病毒诱导基因沉默技术体系的建立. 园艺学报, 39 (11):2168-2174. | |
[35] | Zhang Wei, Guo Ming-liang, Huang Fei-yi, Long Yan, Hou Xi-lin, Li Ying. 2021. Homologous cloning and functional analysis of the tillering regulation gene BcMAX1 in non-heading Chinese cabbage. Journal of Nanjing Agricultural University, 44 (2):241-248. (in Chinese) |
张玮, 郭明亮, 黄菲艺, 龙言, 侯喜林, 李英. 2021. 不结球白菜分枝调控基因BcMAX1的同源克隆及功能分析. 南京农业大学学报, 44 (2):241-248. | |
[36] |
Zou J H, Zhang S Y, Zhang W P, Li G, Chen Z X, Zhai W X, Zhao X F, Pan X B, Xie Q, Zhu L H. 2006. The rice HIGH‐TILLERING DWARF 1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. The Plant Journal, 48 (5):687-698.
doi: 10.1111/tpj.2006.48.issue-5 URL |
[1] | ZHAO Xiuyun, LI Peirong, ZHANG Fenglan, YU Yangjun, ZHANG Deshuang, YU Shuancang, WANG Weihong, SU Tongbing, XIN Xiaoyun. A New Late-bolting Pakchoi Cultivar‘Chunyou 4’ [J]. Acta Horticulturae Sinica, 2021, 48(7): 1429-1430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd