Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (5): 1009-1024.doi: 10.16420/j.issn.0513-353x.2022-0328
• Genetic & Breeding·Germplasm Resources·Molecular Biology • Previous Articles Next Articles
FU Yu1,2,*, ZHANG Lingkui2,*, HUANG Yile2, YANG Yinqing2, CHEN Shumin2, ZHANG Kang2, LI Liangjun1,**(), CHENG Feng2,**
Received:
2022-06-17
Revised:
2023-01-11
Online:
2023-05-25
Published:
2023-05-31
Contact:
LI Liangjun, CHENG Feng
E-mail:ljli@yzu.edu.cn
CLC Number:
FU Yu, ZHANG Lingkui, HUANG Yile, YANG Yinqing, CHEN Shumin, ZHANG Kang, LI Liangjun, CHENG Feng. The Evolutionary Relationship of Chromosomes in Seven Solanaceae Species[J]. Acta Horticulturae Sinica, 2023, 50(5): 1009-1024.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0328
物种 Species | 染色体数 Chromosome number | 品种名/版本 Cultivar name/Version | 染色体上基因数 Gene number |
---|---|---|---|
番茄 Solanum lycopersicum | 12 | SL4.0 | 33 562 |
马铃薯 Solanum tuberosum | 12 | DM v6.1 | 32 819 |
茄子 Solanum melongena | 12 | V4.1 | 33 644 |
辣椒 Capsicum annuum | 12 | CM334 | 31 600 |
菇娘果 Physalis floridana | 12 | V1 | 31 878 |
枸杞 Lycium barbarum | 12 | V1 | 33 431 |
烟草 Nicotiana tabacum | 24 | NIATTr2 | 35 519 |
葡萄 Vitis vinifera | 19 | 12X | 26 588 |
咖啡 Coffea canephora | 11 | V1 | 25 574 |
Table 1 Information of genomes
物种 Species | 染色体数 Chromosome number | 品种名/版本 Cultivar name/Version | 染色体上基因数 Gene number |
---|---|---|---|
番茄 Solanum lycopersicum | 12 | SL4.0 | 33 562 |
马铃薯 Solanum tuberosum | 12 | DM v6.1 | 32 819 |
茄子 Solanum melongena | 12 | V4.1 | 33 644 |
辣椒 Capsicum annuum | 12 | CM334 | 31 600 |
菇娘果 Physalis floridana | 12 | V1 | 31 878 |
枸杞 Lycium barbarum | 12 | V1 | 33 431 |
烟草 Nicotiana tabacum | 24 | NIATTr2 | 35 519 |
葡萄 Vitis vinifera | 19 | 12X | 26 588 |
咖啡 Coffea canephora | 11 | V1 | 25 574 |
Fig. 1 Genome evolution characteristics and comparative genomic analysis of Solanaceae A:Phylogenetic tree and gene family expansion and contraction of Solanaceae and reference species(red star represents WGT-γ event,green star represents WGT-T event)and collinear fragment relationships among sequenced genomes of seven Solanaceae species. B:The Ks distributions of homologous gene of Solanaceae species. C:Statistical information on intragroup collinear gene pairs among Solanaceae genomes(red fonts represent the proportion of collinear genes in the genome of the red box,and green fonts represent the proportion of collinear genes in the genome of the green box).
Fig. 2 Genomic block division rules and distribution of tomato A:Collinear gene dot plot of tomato and other Solanaceae species. B:Distribution of 27 GBs(S1-S27)in tomato genome and general location of centromere(The color of each GB is determined by the chromosomes of the ancestral genome AN5. Black ellipse indicates the approximate location of the centromeres).
Fig. 4 The inference process of Solanaceae ancestral chromosomes(A)and the rearrangement track of Solanaceae ancestral chromosomes in modern chromosomes(B)
Fig. 5 Regional characteristics of chromosomal rearrangement in Solanaceae(A)and reginal characteristics of recombinant chromosomes in Solanaceae genome(B) The third row of chromosomes in the figure shows the density of the best matching sequence of potato centromere sequences in Solanaceae species. Black ellipse indicates approximate centromere location. GD:Gene density;BM:Best match;RD:Repeat density.
[1] |
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215 (3):403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712 |
[2] |
Armengol L, Marquès-Bonet T, Cheung J, Khaja R, González J R, Scherer S W, Navarro A, Estivill X. 2005. Murine segmental duplications are hot spots for chromosome and gene evolution. Genomics, 86 (6):692-700.
pmid: 16256303 |
[3] |
Bailey J A, Baertsch R, Kent W J, Haussler D, Eichler E E. 2004. Hotspots of mammalian chromosomal evolution. Genome Biology, 5 (4):R23.
doi: 10.1186/gb-2004-5-4-r23 pmid: 15059256 |
[4] |
Barchi L, Rabanus - Wallace M T, Prohens J, Toppino L, Padmarasu S, Portis E, Rotino G L, Stein N, Lanteri S, Giuliano G. 2021. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. The Plant Journal, 107 (2):579-596.
doi: 10.1111/tpj.15313 pmid: 33964091 |
[5] |
Bell C D, Soltis D E, Soltis P S. 2010. The age and diversification of the angiosperms re-revisited. American Journal of Botany, 97 (8):1296-1303.
doi: 10.3732/ajb.0900346 pmid: 21616882 |
[6] |
Bulazel K V, Ferreri G C, Eldridge M D, O'Neill R J. 2007. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biology, 8 (8):R170.
doi: 10.1186/gb-2007-8-8-r170 pmid: 17708770 |
[7] |
Byrne K P, Wolfe K H. 2005. The yeast gene order browser:combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15 (10):1456-1461.
doi: 10.1101/gr.3672305 URL |
[8] |
Cao Y L, Li Y L, Fan Y F, Li Z, Yoshida K, Wang J Y, Ma X K, Wang N, Mitsuda N, Kotake T, Ishimizu T, Tsai K C, Niu S C, Zhang D, Sun W H, Luo Q, Zhao J H, Yin Y, Zhang B, Wang J Y, Qin K, An W, He J, Dai G L, Wang Y J, Shi Z G, Jiao E N, Wu P J, Liu X, Liu B, Liao X Y, Jiang Y T, Yu X, Hao Y, Xu X Y, Zou S Q, Li M H, Hsiao Y Y, Lin Y F, Liang C K, Chen Y Y, Wu W L, Lu H C, Lan S R, Wang Z W, Zhao X, Zhong W Y, Yeh C M, Tsai W C, van de Peer Y, Liu Z J. 2021. Wolfberry genomes and the evolution of Lycium(Solanaceae). Communications Biology, 4 (1):671.
doi: 10.1038/s42003-021-02152-8 |
[9] |
Cheng F, Wu J, Fang L, Wang X. 2012. Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Frontiers in Plant Science, 3:198.
doi: 10.3389/fpls.2012.00198 pmid: 22969786 |
[10] |
Coghlan A, Eichler E E, Oliver S G, Paterson A H, Stein L. 2005. Chromosome evolution in eukaryotes:a multi-kingdom perspective. Trends in Genetics, 21 (12):673-682.
doi: 10.1016/j.tig.2005.09.009 pmid: 16242204 |
[11] |
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury J M, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes M C, Crouzillat D, da Silva C, Daddiego L, de Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joet T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li L T, Librado P, Lopez L, Munoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant - Dubreuil C, van Buren R, Zhang Q, Andrade A C, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry R J, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert V A, Wincker P, Lashermes P. 2014. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 345 (6201):1181-1184.
doi: 10.1126/science.1255274 pmid: 25190796 |
[12] | Edgar R. 2021. MUSCLE v5 enables improved estimates of phylogenetic tree confidence by ensemble bootstrapping. BioRxiv,449169. |
[13] |
Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A. 2017. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 18 (1):448.
doi: 10.1186/s12864-017-3791-6 pmid: 28625162 |
[14] |
Emms D M, Kelly S. 2019. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biology, 20 (1):238.
doi: 10.1186/s13059-019-1832-y |
[15] | Flynn J M, Hubley R, Goubert C, Rosen J, Clark A G, Feschotte C, Smit A F. 2020. RepeatModeler 2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117 (17):9451-9457. |
[16] | Freeling M, Scanlon M J, Fowler J E. 2015. Fractionation and subfunctionalization following genome duplications:mechanisms that drive gene content and their consequences. Current Opinion in Genetics & Development, 35:110-118. |
[17] |
Hampson S E, Gaut B S, Baldi P. 2005. Statistical detection of chromosomal homology using shared-gene density alone. Bioinformatics, 21 (8):1339-1348.
pmid: 15585535 |
[18] |
Han M V, Thomas G W, Lugo-Martinez J, Hahn M W. 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular Biology and Evolution, 30 (8):1987-1997.
doi: 10.1093/molbev/mst100 pmid: 23709260 |
[19] |
Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H. 2014. Draft genome sequence of eggplant(Solanum melongena L.) the representative solanum species indigenous to the old world. DNA Research, 21 (6):649-660.
doi: 10.1093/dnares/dsu027 pmid: 25233906 |
[20] | Hosmani P S, Flores-Gonzalez M, Geest H V D, Maumus F, Saha S. 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing,Hi-C proximity ligation and optical maps. BioRxiv,767764. |
[21] |
Huang B, Hu G, Wang K, Frasse P, Maza E, Djari A, Deng W, Pirrello J, Burlat V, Pons C, Granell A, Li Z, van der Rest B, Bouzayen M. 2021. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communication, 12 (1):6892.
doi: 10.1038/s41467-021-27117-7 |
[22] |
Huang G, Zhu Y X. 2019. Plant polyploidy and evolution. Journal of Integrative Plant Biology, 61 (1):4-6.
doi: 10.1111/jipb.12758 |
[23] |
Jagannathan M, Cummings R, Yamashita Y M. 2018. A conserved function for pericentromeric satellite DNA. eLife, 7:e34122.
doi: 10.7554/eLife.34122 URL |
[24] |
Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, dePamphilis C W. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature, 473 (7345):97-100.
doi: 10.1038/nature09916 |
[25] | Kapun M, Flatt T. 2019. The adaptive significance of chromosomal inversion polymorphisms in Drosophila melanogaster. Molecular Ecology Resources, 28 (6):1263-1282. |
[26] |
Kehrer-Sawatzki H, Sandig C A, Goidts V, Hameister H. 2005. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenetic and Genome Research, 108 (1-3):91-97.
pmid: 15545720 |
[27] |
Kim S, Park J, Yeom S I, Kim Y M, Seo E, Kim K T, Kim M S, Lee J M, Cheong K, Shin H S, Kim S B, Han K, Lee J, Park M, Lee H A, Lee H Y, Lee Y, Oh S, Lee J H, Choi E, Choi E, Lee S E, Jeon J, Kim H, Choi G, Song H, Lee J, Lee S C, Kwon J K, Lee H Y, Koo N, Hong Y, Kim R W, Kang W H, Huh J H, Kang B C, Yang T J, Lee Y H, Bennetzen J L, Choi D. 2017. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology, 18 (1):210.
doi: 10.1186/s13059-017-1341-9 pmid: 29089032 |
[28] | Kumar S, Stecher G, Suleski M, Hedges S B. 2017. Timetree:a resource for timelines,timetrees,and divergence times. Molecular Ecology Resources, 34 (7):1812-1819. |
[29] |
Larkin D M, Pape G, Donthu R, Auvil L, Welge M, Lewin H A. 2009. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Research, 19 (5):770-777.
doi: 10.1101/gr.086546.108 pmid: 19342477 |
[30] |
Liu L, Zhang K, Bai J, Jinrui B, Lu J H, Lu X X, Hu J L, Pan C Y, He S M, Yuan J L, Zhang Y Y, Zhang M, Guo Y M, Wang X X, Huang Z J, Du Y C, Cheng F, Li J M. 2022. All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter. Journal of Experimental Botany, 73:123-138.
doi: 10.1093/jxb/erab401 URL |
[31] | Luo M C, Deal K R, Akhunov E D, Akhunova A R, Anderson O D, Anderson J A, Blake N, Clegg M T, Coleman-Derr D, Conley E J, Crossman C C, Dubcovsky J, Gill B S, Gu Y Q, Hadam J, Heo H Y, Huo N, Lazo G, Ma Y, Matthews D E, McGuire P E, Morrell P L, Qualset C O, Renfro J, Tabanao D, Talbert L E, Tian C, Toleno D M, Warburton M L, You F M, Zhang W, Dvorak J. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proceedings of the National Academy of Sciences, 106 (37):15780-15785. |
[32] |
Martin G B, Brommonschenkel S H, Chunwongse J, Frary A, Tanksley S D. 1993. Map - based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262 (5138):1432-1436.
doi: 10.1126/science.7902614 pmid: 7902614 |
[33] |
Masterson J. 1994. Stomatal size in fossil plants:evidence for polyploidy in majority of angiosperms. Science, 264 (5157):421-424.
doi: 10.1126/science.264.5157.421 pmid: 17836906 |
[34] |
Melters D P, Bradnam K R, Young H A, Telis N, May M R, Ruby J G, Sebra R, Peluso P, Eid J, Rank D, Garcia J F, DeRisi J L, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan S W. 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 14 (1):R10.
doi: 10.1186/gb-2013-14-1-r10 URL |
[35] |
Murat F, Xu J H, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J. 2010. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Research, 20 (11):1545-1557.
doi: 10.1101/gr.109744.110 pmid: 20876790 |
[36] | Olmstead R G, Bohs L. 2007. A summary of molecular systematic research in Solanaceae:1982-2006. Acta Horticulturae, 745:255-268. |
[37] |
Ou S, Jiang N. 2018. LTR_retriever:a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiology, 176 (2):1410-1422.
doi: 10.1104/pp.17.01310 URL |
[38] | Padmanabhan S, Thakur J, Siddharthan R, Sanyal K. 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts,Candida albicans and Candida dubliniensis. Proceedings of the National Academy of Sciences, 105 (50):19797-19802. |
[39] |
Pham G M, Hamilton J P, Wood J C, Burke J T, Zhao H, Vaillancourt B, Ou S, Jiang J, Buell C R. 2020. Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience, 9 (9):giaa100.
doi: 10.1093/gigascience/giaa100 URL |
[40] | Qian Ming. 1983. A brief introduction to plant of Solanaceae. Biology teaching. Shanghai: East China Normal University. (in Chinese) |
钱明. 1983. 茄科植物简介. 生物学教学. 上海: 华东师范大学. | |
[41] |
Ramos M J N, Coito J L, Faisca-Silva D, Cunha J, Costa M M R, Amancio S, Rocheta M. 2020. Portuguese wild grapevine genome re-sequencing (Vitis vinifera sylvestris). Scientific Reports, 10 (1):18993.
doi: 10.1038/s41598-020-76012-6 pmid: 33149248 |
[42] |
Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z, van de Peer Y, Persson S. 2017. Revisiting ancestral polyploidy in plants. Science Advances, 3 (7):e1603195.
doi: 10.1126/sciadv.1603195 URL |
[43] |
Salse J. 2016. Ancestors of modern plant crops. Current Opinion in Plant Biology, 30:134-142.
doi: 10.1016/j.pbi.2016.02.005 pmid: 26985732 |
[44] | Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close Timothy J, Messing J, Feuillet C. 2009a. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proceedings of the National Academy of Sciences, 106 (35):14908-14913. |
[45] |
Salse J, Abrouk M, Murat F, Quraishi U M, Feuillet C. 2009b. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Briefings In Bioinformatics, 10 (6):619-630.
doi: 10.1093/bib/bbp037 URL |
[46] |
Sanderson M J. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19 (2):301-302.
doi: 10.1093/bioinformatics/19.2.301 pmid: 12538260 |
[47] |
Sankoff D, Goldstein M. 1989. Probabilistic models of genome shuffling. Bulletin of Mathematical Biology, 51 (1):117-124.
pmid: 2706396 |
[48] |
Schnable J C, Freeling M, Lyons E. 2012. Genome-wide analysis of syntenic gene deletion in the grasses. Genome Biology and Evolution, 4 (3):265-277.
doi: 10.1093/gbe/evs009 pmid: 22275519 |
[49] |
Schubert I, Lysak M A. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends In Genetics, 27 (6):207-216.
doi: 10.1016/j.tig.2011.03.004 pmid: 21592609 |
[50] |
Schwartz M, Zlotorynski E, Kerem B. 2006. The molecular basis of common and rare fragile sites. Cancer Letters, 232 (1):13-26.
pmid: 16236432 |
[51] |
Shimizu-Inatsugi R, Terada A, Hirose K, Kudoh H, Sese J, Shimizu K K. 2017. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Molecular Ecology, 26 (1):193-207.
doi: 10.1111/mec.13738 pmid: 27352992 |
[52] | Soltis P S, Marchant D B, van de peer Y, Soltis D E. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development, 35:119-125. |
[53] |
Soltis P S, Soltis D E. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology, 30:159-165.
doi: 10.1016/j.pbi.2016.03.015 pmid: 27064530 |
[54] |
Stamatakis A. 2014. RAxML version 8:a tool for phylogenetic analysis and post - analysis of large phylogenies. Bioinformatics, 30 (9):1312-1313.
doi: 10.1093/bioinformatics/btu033 URL |
[55] |
Su H, Liu Y, Liu C, Shi Q, Huang Y, Han F. 2019. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell, 31 (9):2035-2051.
doi: 10.1105/tpc.19.00133 URL |
[56] | Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 4:10. |
[57] |
The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485 (7400):635-641.
doi: 10.1038/nature11119 |
[58] |
van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics, 18 (7):411-424.
doi: 10.1038/nrg.2017.26 pmid: 28502977 |
[59] | Vollger M R, Guitart X, Dishuck P C, Mercuri L, Harvey W T, Gershman A, Diekhans M, Sulovari A, Munson K M, Lewis A P, Hoekzema K, Porubsky D, Li R, Nurk S, Koren S, Miga K H, Phillippy A M, Timp W, Ventura M, Eichler E E. 2022. Segmental duplications and their variation in a complete human genome. Science, 376:6588. |
[60] |
Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A, Tanksley S D. 2008. Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics, 180 (1):391-408.
doi: 10.1534/genetics.108.087981 pmid: 18723883 |
[61] | Wikstrom N, Savolainen V, Chase M W. 2001. Evolution of the angiosperms:calibrating the family tree. Proceedings of the Royal Society B:Biological Sciences, 268 (1482):2211-2220. |
[62] |
Wu F, Mueller L A, Crouzillat D, Pétiard V, Tanksley S D. 2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes(COSII)for comparative,evolutionary and systematic studies:a test case in the euasterid plant clade. Genetics, 174 (3):1407-1420.
doi: 10.1534/genetics.106.062455 URL |
[63] |
Wu F, Tanksley S D. 2010. Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 11:182.
doi: 10.1186/1471-2164-11-182 pmid: 20236516 |
[64] | Yadav V, Sun S, Billmyre R B, Thimmappa B C, Shea T, Lintner R, Bakkeren G, Cuomo C A, Heitman J, Sanyal K. 2018. RNAi is a critical determinant of centromere evolution in closely related fungi. Proceedings of the National Academy of Sciences, 115 (12):3108-3113. |
[65] |
Zhang K, Wang X W, Cheng F. 2019. Plant polyploidy:origin,evolution,and its influence on crop domestication. Horticultural Plant Journal, 5 (6):231-239.
doi: 10.1016/j.hpj.2019.11.003 |
[66] | Zhang Z. 2022. KaKs_calculator 3.0:Calculating selective pressure on coding and non-coding sequences. Genomics Proteomics & Bioinformatics, 20 (3):536-540. |
[67] | Zheng C, Zhu Q, Sankoff D. 2007. Genome halving with an outgroup. Evolutionary Bioinformatics, 2:295-302. |
[1] | WANG Xing,LUO Shuangxia,YU Ping,LUO Lei,ZHAO Jianjun,WANG Yanhua,SHEN Shuxing*,and CHEN Xueping*. Advances in Phenylaprapanoid Metabolism and Its Enzyme Genes in Solanaceae Vegetables [J]. ACTA HORTICULTURAE SINICA, 2017, 44(9): 1738-1748. |
[2] | LI Xiao,CHENG Yufu,and YANG Xu *. Research Progress of WRKY Transcription Factors in Solanaceae Plants [J]. ACTA HORTICULTURAE SINICA, 2017, 44(1): 170-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd