园艺学报 ›› 2025, Vol. 52 ›› Issue (8): 2059-2080.doi: 10.16420/j.issn.0513-353x.2024-0512
收稿日期:
2025-04-21
修回日期:
2025-06-25
出版日期:
2025-08-19
发布日期:
2025-08-19
通讯作者:
基金资助:
XU Shugui, and ZHENG Zheng*(), DENG Xiaoling*(
)
Received:
2025-04-21
Revised:
2025-06-25
Published:
2025-08-19
Online:
2025-08-19
摘要:
从多角度综述柑橘黄龙病(citrus Huanglongbing,HLB)的防治研究进展,包括变温处理、抗生素、抗菌药物、免疫诱导剂、抗性栽培和营养调控,对比不同方法有利于各方优势互补,以期为未来黄龙病的防治研究提供参考,助力综合防控体系的构建。
徐淑桂, 郑正, 邓晓玲. 柑橘黄龙病防治研究进展[J]. 园艺学报, 2025, 52(8): 2059-2080.
XU Shugui, and ZHENG Zheng, DENG Xiaoling. Research Progress on the Pathogen Control of Citrus Huanglongbing[J]. Acta Horticulturae Sinica, 2025, 52(8): 2059-2080.
抗菌级别 Antibacterial activity | 抗生素 Antibiotics | 嫁接180 d后Ct值 Ct value after 180 days of grafting | 接穗成活率/% Scion Survival | 传毒率/% | ||
---|---|---|---|---|---|---|
对照 Control | 接穗 Scion | 砧木 Rootstocks | ||||
高效 Highly efficient | 氨苄西林、羧苄青霉素钠、青霉素钾、头孢氨苄、利福平、磺胺间二甲氧嘧啶钠 Ampicillin sodium,Carbenicillin disodium,Penicillin G potassium,Cefalexin,Rifampicin,Sulfadimethoxine sodium | 25.9 ± 2.7 a | 38.3 ± 1.7 a | 37.0 ± 2.2 a | 80.9 ± 8.0 a | 16.9 ± 16.2 c |
部分有效 Partly effective | 氯霉素、井冈霉素、中生菌素、磺胺甲恶唑、环丝氨酸、卡那霉素、壮观霉素、潮霉素、利福昔明、盐酸环丙沙星、磺胺噻唑钠、利福霉素钠 Chloramphenicol,Validoxylamine A,Sulfamethoxazole,Cycloserine,Kanamycin sulfate,Spectinomycin dihydrochloride pentadrate,Zhongshengmycin,Hygromycin B,Rifaximin,Ciprofloxacin hydrochloride,Sulfathiazole sodium,Rifamycin sodium | 26.1 ± 1.9 a | 32.3 ± 1.4 b | 33.6 ± 2.7 b | 81.7 ± 15.5 a | 39.2 ± 12.0 b |
无效 No effective | 硫酸丁胺卡那霉素、硫酸多黏菌素B、春雷霉素、多黏菌素E甲磺酸钠、硫酸链霉素、盐酸万古霉素、西诺沙星、硫酸双生霉素、硫酸新霉素、妥布霉素、盐酸林可霉素 Amikacin sulfate,Polymixin B sulfate,Kasugamycin hydrochloride,Colistinmethanesulfonate sodium,Streptomycin sulfate,Vancomycin hydrochloride,Cinoxacin,Gentamicin sulfate,Neomycin hydrate trisulfate,Tobramycin,Lincomycinhydrocloride | 25.1 ± 1.9 a | 27.2 ± 3.0 c | 26.4 ± 2.4 c | 89.8 ± 9.4 a | 80.5 ± 9.8 a |
表1 不同抗菌级别抗生素对黄龙病菌的杀菌效果
Table 1 Antibacterial activity of different antibiotics against Candidatus Liberibacter spp.
抗菌级别 Antibacterial activity | 抗生素 Antibiotics | 嫁接180 d后Ct值 Ct value after 180 days of grafting | 接穗成活率/% Scion Survival | 传毒率/% | ||
---|---|---|---|---|---|---|
对照 Control | 接穗 Scion | 砧木 Rootstocks | ||||
高效 Highly efficient | 氨苄西林、羧苄青霉素钠、青霉素钾、头孢氨苄、利福平、磺胺间二甲氧嘧啶钠 Ampicillin sodium,Carbenicillin disodium,Penicillin G potassium,Cefalexin,Rifampicin,Sulfadimethoxine sodium | 25.9 ± 2.7 a | 38.3 ± 1.7 a | 37.0 ± 2.2 a | 80.9 ± 8.0 a | 16.9 ± 16.2 c |
部分有效 Partly effective | 氯霉素、井冈霉素、中生菌素、磺胺甲恶唑、环丝氨酸、卡那霉素、壮观霉素、潮霉素、利福昔明、盐酸环丙沙星、磺胺噻唑钠、利福霉素钠 Chloramphenicol,Validoxylamine A,Sulfamethoxazole,Cycloserine,Kanamycin sulfate,Spectinomycin dihydrochloride pentadrate,Zhongshengmycin,Hygromycin B,Rifaximin,Ciprofloxacin hydrochloride,Sulfathiazole sodium,Rifamycin sodium | 26.1 ± 1.9 a | 32.3 ± 1.4 b | 33.6 ± 2.7 b | 81.7 ± 15.5 a | 39.2 ± 12.0 b |
无效 No effective | 硫酸丁胺卡那霉素、硫酸多黏菌素B、春雷霉素、多黏菌素E甲磺酸钠、硫酸链霉素、盐酸万古霉素、西诺沙星、硫酸双生霉素、硫酸新霉素、妥布霉素、盐酸林可霉素 Amikacin sulfate,Polymixin B sulfate,Kasugamycin hydrochloride,Colistinmethanesulfonate sodium,Streptomycin sulfate,Vancomycin hydrochloride,Cinoxacin,Gentamicin sulfate,Neomycin hydrate trisulfate,Tobramycin,Lincomycinhydrocloride | 25.1 ± 1.9 a | 27.2 ± 3.0 c | 26.4 ± 2.4 c | 89.8 ± 9.4 a | 80.5 ± 9.8 a |
分类 Category | 靶标 Target | 作用 Function | 小分子化合物 Drug | 试验结果 Efficacy | 参考文献 Reference | |
---|---|---|---|---|---|---|
转运系统 Transporter system | SecA | SecA是细菌独有的分泌系统II的组成成分,可以构成SecA-ATP酶,供给能量 SecA is the unique bacterial component of secretion system II that forms the SecA-ATPase to supply energy | 4-(4-碘-2-甲基苯氧乙酰基)苯磺酰胺,2-(苯并咪唑-2-硫代)-N-[2-(环丙胺甲酰甲硫基)苯并噻唑-6-基]乙酰胺,2-(5-氨基-1,2,4-三唑-3-硫代)-1-(2,5-二氯苯基-2,4-二甲基环戊二烯基)乙酮, 4-(4-氯-2-甲基苯氧乙酰基)苯磺酰胺 4-[(4-Iodo-2-methylphenoxy)acetyl]benzenesulfonamide,2-(1H-Benzimidazol-2-ylthio)-N-[2-(cyclopropylcarbamoylmethylthio)benzothiazol-6-yl]acetamide,2-(5-Amino-1,2,4-triazol-3-ylthio)-1-(2,5-dichlorophenyl)-2,4-dimethylcyclopent-1-en-1-one, 4-(4-Chloro-2-methylphenoxyacetyl)benzenesulfonamide | 采用虚拟筛选和分子对接的方法,发现这4种化合物在20 μmol · L-1对SecA抑制率大于65%,它们能与SecA的Phe84位点形成稳定的π-π结构,使SecA无法和ATP结合而失活,达到抑菌的目的 Using virtual screening and molecular docking methods,it was found that these four compounds inhibited SecA by more than 65% at 20 μmol · L-1,and they could form a stable π-π structure with the Phe84 site of SecA,which inactivated SecA by preventing it from combining with ATP,and thus achieved bacterial inhibition | Akula et al., | |
2,4-二氟苄基-4-氟苯基四氢吡唑并吡啶甲酰胺,4-氯苯基-2-乙氧基苯基二氢吡唑并吡啶甲酰胺 (2,4-Difluorobenzyl)(4-fluorophenyl)tetrahydropyrazolopyridinecarboxamide,(4-Chlorophenyl)(2-ethoxyphenyl)dihydropyrazolopyridinecarboxamide | 分子对接的结果表明两种化合物可以和SecA的多个残基相互形成稳定的氢键和金属配位互作,浓度为1 mg · mL-1的P684-2850、P684-3808对L. crescens BT-1的抑制率达99.6%、56.1% The results of molecular docking showed that they could form stable hydrogen bonds and metal-ligand interactions with several residues of SecA,and the inhibition rates of P684-2850 and P684-3808 at a concentration of 1 mg · mL-1 against L. crescens BT-1 were 99.6% and 56.1% respectively | Zhang et al., | ||||
ZunA1 | 黄龙病菌的ABC转运系统的组成部分,负责吸收外界Zn离子 ABC transporter system of Ca. Lasiaticus is responsible for the uptake of external Zn ions | ZINC15670529,ZINC92774705, ZINC06510089,ZINC79841324,ZINC69594834 | 从ZINC筛选出的5个候选小分子能够与CLas的ZnuA1活性位点残基形成氢键,结合自由能较低,形成稳定的复合物,阻断CLas对Zn2+摄取,可以进一步开发为CLas的抑制剂 The five candidate small molecules screened from the ZINC database,which can be further developed as inhibitors of CLas,can form hydrogen bonds with the active site residues of CLas ZnuA1,exhibiting low binding free energy and forming stable complexes,thereby blocking Zn2+ uptake by CLas | Saini et al., | ||
调节因子 Regulatory factors | LdtR | LdtR可以感受并调节细胞渗透压、影响细菌细胞壁的合成 LdtR senses and regulates cellular osmotic pressure and influences bacterial cell wall synthesis | 根皮素,苯溴马隆,己烷雌酚 Phloretin,Benzbromarone,Hexestrol | 根皮素、苯溴马隆、己烷雌酚可以结合CLas的LdtR蛋白形成稳定复合物,干扰细胞的渗透压平衡,利用根瘤菌和L. crescens进行体外实验也证明这3种化合物可以使病菌的细胞吸涨破裂 Phloretin,benzbromarone,and hexestrol can bind to the LdtR protein of CLas to form stable complexes that disrupt cellular osmotic balance. In vitro experiments using Rhizobium and L. crescens have demonstrated that these three compounds induce bacterial cell turgor and subsequent lysis | Pagliai et al., | |
PrbP | PrbP和RNA聚合酶β亚基互作调节基因表达,可能与细菌的致病力、细胞活性、抗逆性相关 PrbP and RNA polymerase β subunit interact to regulate gene expression,which may be related to bacterial pathogenicity,cellular activity,and resistance | 托芬那酸 Tolfenamic acid | 托芬那酸可以干扰PrbP和RNA聚合酶的互作,托芬那酸灌根或喷施感染黄龙病柑橘植株,在2个月后病株恢复长势,根系比对照更健康发达,病原含量在11个月后降低了80% ~ 95% Tolfenamic acid can interfere with the interaction between PrbP and RNA polymerase. When applied to citrus plants infected with Huanglongbing via root irrigation or foliar spraying,the treated plants showed recovered growth vigor after two months,with healthier and more developed root systems compared to the control group,and the number of CLas decreased by 80% to 95% after 11 months | Gardner et al., | ||
核苷酸合成 Nucleotide synthesis | IMPDH | 两者均为鸟嘌呤核苷酸合成的关键蛋白,肌苷-5’-单磷酸脱氢酶(IMPDH)氧化肌苷-5’-单磷酸为5’-单磷酸黄嘌呤(XMP),鸟苷-5’-单磷酸合成酶 (GMPS)再将其转化为鸟苷-5’-单磷酸(GMP) Both of them are key proteins for guanine nucleotide synthesis,Inosine-5’-monophosphate dehydrogenase (IMPDH) oxidizes inosine-5’-monophosphate to 5’-monophosphate xanthine (XMP),which is converted to guanosine-5’-monophosphate (GMP) by guanosine-5’-monophosphate synthase (GMPS) | 布罗波尔,双硫仑 Bronopol,Disulfiram | 分子对接结果表明两种化合物可以靶向结合CLas IMPDHΔ98-201,抑制常数(Kᵢ)分别为234 nmol · L-1和616 nmol · L-1,抑制IMPDH可阻断GMP合成,从而干扰CLas的增殖 Molecular docking results demonstrated that both compounds can target and bind to CLas IMPDHΔ98-201,with inhibition constants (Kᵢ) of 234 nmol · L-1 and 616 nmol · L-1,respectively. By inhibiting IMPDH,these compounds block GMP biosynthesis,thereby disrupting CLas proliferation | Nan et al., | |
GMPS | 叶酸,AZD1152 Folic acid,AZD1152 | 综合考虑结合力、溶解性、毒性等指标选出叶酸和化合物AZD1152进行GMPS酶活性抑制试验,不仅有良好的抑制效果,且分子对接结果表明这两种化合物可以和GMPS形成稳定的复合物使其失活 Folic acid and AZD1152 were selected for the GMPS inhibition test by considering the binding force,solubility,toxicity and other indexes,which showed not only good effect,but also stable complexes could be form from these two compounds with GMPS to inactivate it by the molecular docking results | Nan et al., | |||
YbeY | YbeY具有内切酶活性,参与核糖体RNA的加工,影响细菌共生关系的建立和致病力 YbeY has endonuclease activity and is involved in the processing of ribosomal RNA,which affects the establishment of bacterial symbiosis and pathogenicity | 木犀草素 Luteolin | 木犀草素是一种黄酮类化合物,在柑橘中含量较少,但是体外试验表明它可以有效抑制YbeY的酶活性,有效降低病菌量,柑橘的黄酮类物质如黄酮、黄酮醇都对YbeY有良好的抑制作用,效果和木犀草素相似 Luteolin is a kind of flavonoids,the content in citrus is relatively small. But in vitro experiments show that it can effectively inhibit the YbeY and reduce the amount of pathogens. Other citrus flavonoids such as flavonoids,flavonols also could inhibit YbeY,and the effects is similar to that of luteolin | Zuo et al., | ||
其他 Others | CLaBCP | CLaBCP是细菌的过氧化物还原酶,主要作用是维持细胞活性氧、自由基等过氧化物的稳态,参与DNA结合、细胞增殖和凋亡、信号转导等 CLaBCP is a peroxide reductase of bacteria,which mainly plays a role in maintaining the homeostasis of peroxides such as cellular reactive oxygen species and free radicals,and is involved in DNA binding,cell proliferation and apoptosis,signal transduction,etc | Conoidin-A,雷公藤红素 Conoidin-A,celastrol | Conoidin-A和雷公藤红素是两种过氧化物还原酶抑制剂,靶向结合CLas的CLaBCP,形成构象稳定的复合物,在200 μmol · L-1的Conoidin-A和雷公藤红素分别将CLaBCP的活性降低至215.8 μmol · L-1·mg-1·min-1和216 μmol · L-1·mg-1·min-1,对CLaBCP的抑制效果显著,具有抗CLas的潜力 Conoidin-A and celastrol are two peroxide reductase inhibitors,targeting CLaBCP that binds to CLas to form a conformationally stable complex,and 200 μmol · L-1 Conoidin-A and celastrol reduced the activity of CLaBCP to 215.8 μmol · L-1·mg-1·min-1 and 216 μmol · L-1·mg-1·min-1,respectively,indicating significant inhibition of CLaBCP and having the potential to fight CLas | Gupta et al., | |
Esbp | Esbp是一种胞外结合蛋白,参与细菌铁离子的转运过程 Esbp is an extracellular binding protein involved in the transport of iron ions | ZINC03143779,ZINC05491830,ZINC19210425,ZINC08750867, ZINC14671545 | 通过虚拟筛选和模拟对接选出了这5种分子,可以靶向结合Esbp,形成的复合物具有多个稳定氢键结构,从而破坏Esbp活性影响CLas对铁离子的吸收,起到抑菌的效果 The five molecules were selected by virtual screening and simulated docking,which showed good binding ability to Esbp,and the complexes were structurally stabilized by multiple hydrogen bonds. Esbp inactivity could affect the uptake of iron ions of CLas,which would have antibacterial effects | Saini et al., | ||
细胞膜(脂多糖) Cell mem- brane(lipopolysacchari- des) | 革兰氏阴性菌外膜含脂多糖,脂多糖既可以增强细菌的抗逆性,也可以成为细菌的毒力因子 The outer membrane of Gram-negative bacteria contains lipopolysaccharides,which can either enhance resistance or act as virulence factors | 抗菌肽(AMP) Antimicrobial peptides(AMP) | 抗菌肽SAMP可以在细胞膜形成孔隙结构导致胞质泄露和细胞裂解,向感染黄龙病的大叶橙、甜橙、柠檬分别注射10 μmol · L-1 SAMP,两个月后病菌量相较对照大幅降低,半年内病株恢复长势,新叶没有黄龙病症状 Antimicrobial peptides SAMP can form a pore structure in the cell membrane leading to cytoplasmic leakage and cell lysis. 10 μmol · L-1 SAMP was injected into infected big-leaf oranges,sweet oranges,and lemons respectively. The amount of the CLas was greatly reduced compared with the control after two months,and the diseased plants regained their growth in half a year,and there were no symptoms in the new leaves | Huang et al., |
表2 小分子靶向药物
Table 2 Small molecule targeted drugs
分类 Category | 靶标 Target | 作用 Function | 小分子化合物 Drug | 试验结果 Efficacy | 参考文献 Reference | |
---|---|---|---|---|---|---|
转运系统 Transporter system | SecA | SecA是细菌独有的分泌系统II的组成成分,可以构成SecA-ATP酶,供给能量 SecA is the unique bacterial component of secretion system II that forms the SecA-ATPase to supply energy | 4-(4-碘-2-甲基苯氧乙酰基)苯磺酰胺,2-(苯并咪唑-2-硫代)-N-[2-(环丙胺甲酰甲硫基)苯并噻唑-6-基]乙酰胺,2-(5-氨基-1,2,4-三唑-3-硫代)-1-(2,5-二氯苯基-2,4-二甲基环戊二烯基)乙酮, 4-(4-氯-2-甲基苯氧乙酰基)苯磺酰胺 4-[(4-Iodo-2-methylphenoxy)acetyl]benzenesulfonamide,2-(1H-Benzimidazol-2-ylthio)-N-[2-(cyclopropylcarbamoylmethylthio)benzothiazol-6-yl]acetamide,2-(5-Amino-1,2,4-triazol-3-ylthio)-1-(2,5-dichlorophenyl)-2,4-dimethylcyclopent-1-en-1-one, 4-(4-Chloro-2-methylphenoxyacetyl)benzenesulfonamide | 采用虚拟筛选和分子对接的方法,发现这4种化合物在20 μmol · L-1对SecA抑制率大于65%,它们能与SecA的Phe84位点形成稳定的π-π结构,使SecA无法和ATP结合而失活,达到抑菌的目的 Using virtual screening and molecular docking methods,it was found that these four compounds inhibited SecA by more than 65% at 20 μmol · L-1,and they could form a stable π-π structure with the Phe84 site of SecA,which inactivated SecA by preventing it from combining with ATP,and thus achieved bacterial inhibition | Akula et al., | |
2,4-二氟苄基-4-氟苯基四氢吡唑并吡啶甲酰胺,4-氯苯基-2-乙氧基苯基二氢吡唑并吡啶甲酰胺 (2,4-Difluorobenzyl)(4-fluorophenyl)tetrahydropyrazolopyridinecarboxamide,(4-Chlorophenyl)(2-ethoxyphenyl)dihydropyrazolopyridinecarboxamide | 分子对接的结果表明两种化合物可以和SecA的多个残基相互形成稳定的氢键和金属配位互作,浓度为1 mg · mL-1的P684-2850、P684-3808对L. crescens BT-1的抑制率达99.6%、56.1% The results of molecular docking showed that they could form stable hydrogen bonds and metal-ligand interactions with several residues of SecA,and the inhibition rates of P684-2850 and P684-3808 at a concentration of 1 mg · mL-1 against L. crescens BT-1 were 99.6% and 56.1% respectively | Zhang et al., | ||||
ZunA1 | 黄龙病菌的ABC转运系统的组成部分,负责吸收外界Zn离子 ABC transporter system of Ca. Lasiaticus is responsible for the uptake of external Zn ions | ZINC15670529,ZINC92774705, ZINC06510089,ZINC79841324,ZINC69594834 | 从ZINC筛选出的5个候选小分子能够与CLas的ZnuA1活性位点残基形成氢键,结合自由能较低,形成稳定的复合物,阻断CLas对Zn2+摄取,可以进一步开发为CLas的抑制剂 The five candidate small molecules screened from the ZINC database,which can be further developed as inhibitors of CLas,can form hydrogen bonds with the active site residues of CLas ZnuA1,exhibiting low binding free energy and forming stable complexes,thereby blocking Zn2+ uptake by CLas | Saini et al., | ||
调节因子 Regulatory factors | LdtR | LdtR可以感受并调节细胞渗透压、影响细菌细胞壁的合成 LdtR senses and regulates cellular osmotic pressure and influences bacterial cell wall synthesis | 根皮素,苯溴马隆,己烷雌酚 Phloretin,Benzbromarone,Hexestrol | 根皮素、苯溴马隆、己烷雌酚可以结合CLas的LdtR蛋白形成稳定复合物,干扰细胞的渗透压平衡,利用根瘤菌和L. crescens进行体外实验也证明这3种化合物可以使病菌的细胞吸涨破裂 Phloretin,benzbromarone,and hexestrol can bind to the LdtR protein of CLas to form stable complexes that disrupt cellular osmotic balance. In vitro experiments using Rhizobium and L. crescens have demonstrated that these three compounds induce bacterial cell turgor and subsequent lysis | Pagliai et al., | |
PrbP | PrbP和RNA聚合酶β亚基互作调节基因表达,可能与细菌的致病力、细胞活性、抗逆性相关 PrbP and RNA polymerase β subunit interact to regulate gene expression,which may be related to bacterial pathogenicity,cellular activity,and resistance | 托芬那酸 Tolfenamic acid | 托芬那酸可以干扰PrbP和RNA聚合酶的互作,托芬那酸灌根或喷施感染黄龙病柑橘植株,在2个月后病株恢复长势,根系比对照更健康发达,病原含量在11个月后降低了80% ~ 95% Tolfenamic acid can interfere with the interaction between PrbP and RNA polymerase. When applied to citrus plants infected with Huanglongbing via root irrigation or foliar spraying,the treated plants showed recovered growth vigor after two months,with healthier and more developed root systems compared to the control group,and the number of CLas decreased by 80% to 95% after 11 months | Gardner et al., | ||
核苷酸合成 Nucleotide synthesis | IMPDH | 两者均为鸟嘌呤核苷酸合成的关键蛋白,肌苷-5’-单磷酸脱氢酶(IMPDH)氧化肌苷-5’-单磷酸为5’-单磷酸黄嘌呤(XMP),鸟苷-5’-单磷酸合成酶 (GMPS)再将其转化为鸟苷-5’-单磷酸(GMP) Both of them are key proteins for guanine nucleotide synthesis,Inosine-5’-monophosphate dehydrogenase (IMPDH) oxidizes inosine-5’-monophosphate to 5’-monophosphate xanthine (XMP),which is converted to guanosine-5’-monophosphate (GMP) by guanosine-5’-monophosphate synthase (GMPS) | 布罗波尔,双硫仑 Bronopol,Disulfiram | 分子对接结果表明两种化合物可以靶向结合CLas IMPDHΔ98-201,抑制常数(Kᵢ)分别为234 nmol · L-1和616 nmol · L-1,抑制IMPDH可阻断GMP合成,从而干扰CLas的增殖 Molecular docking results demonstrated that both compounds can target and bind to CLas IMPDHΔ98-201,with inhibition constants (Kᵢ) of 234 nmol · L-1 and 616 nmol · L-1,respectively. By inhibiting IMPDH,these compounds block GMP biosynthesis,thereby disrupting CLas proliferation | Nan et al., | |
GMPS | 叶酸,AZD1152 Folic acid,AZD1152 | 综合考虑结合力、溶解性、毒性等指标选出叶酸和化合物AZD1152进行GMPS酶活性抑制试验,不仅有良好的抑制效果,且分子对接结果表明这两种化合物可以和GMPS形成稳定的复合物使其失活 Folic acid and AZD1152 were selected for the GMPS inhibition test by considering the binding force,solubility,toxicity and other indexes,which showed not only good effect,but also stable complexes could be form from these two compounds with GMPS to inactivate it by the molecular docking results | Nan et al., | |||
YbeY | YbeY具有内切酶活性,参与核糖体RNA的加工,影响细菌共生关系的建立和致病力 YbeY has endonuclease activity and is involved in the processing of ribosomal RNA,which affects the establishment of bacterial symbiosis and pathogenicity | 木犀草素 Luteolin | 木犀草素是一种黄酮类化合物,在柑橘中含量较少,但是体外试验表明它可以有效抑制YbeY的酶活性,有效降低病菌量,柑橘的黄酮类物质如黄酮、黄酮醇都对YbeY有良好的抑制作用,效果和木犀草素相似 Luteolin is a kind of flavonoids,the content in citrus is relatively small. But in vitro experiments show that it can effectively inhibit the YbeY and reduce the amount of pathogens. Other citrus flavonoids such as flavonoids,flavonols also could inhibit YbeY,and the effects is similar to that of luteolin | Zuo et al., | ||
其他 Others | CLaBCP | CLaBCP是细菌的过氧化物还原酶,主要作用是维持细胞活性氧、自由基等过氧化物的稳态,参与DNA结合、细胞增殖和凋亡、信号转导等 CLaBCP is a peroxide reductase of bacteria,which mainly plays a role in maintaining the homeostasis of peroxides such as cellular reactive oxygen species and free radicals,and is involved in DNA binding,cell proliferation and apoptosis,signal transduction,etc | Conoidin-A,雷公藤红素 Conoidin-A,celastrol | Conoidin-A和雷公藤红素是两种过氧化物还原酶抑制剂,靶向结合CLas的CLaBCP,形成构象稳定的复合物,在200 μmol · L-1的Conoidin-A和雷公藤红素分别将CLaBCP的活性降低至215.8 μmol · L-1·mg-1·min-1和216 μmol · L-1·mg-1·min-1,对CLaBCP的抑制效果显著,具有抗CLas的潜力 Conoidin-A and celastrol are two peroxide reductase inhibitors,targeting CLaBCP that binds to CLas to form a conformationally stable complex,and 200 μmol · L-1 Conoidin-A and celastrol reduced the activity of CLaBCP to 215.8 μmol · L-1·mg-1·min-1 and 216 μmol · L-1·mg-1·min-1,respectively,indicating significant inhibition of CLaBCP and having the potential to fight CLas | Gupta et al., | |
Esbp | Esbp是一种胞外结合蛋白,参与细菌铁离子的转运过程 Esbp is an extracellular binding protein involved in the transport of iron ions | ZINC03143779,ZINC05491830,ZINC19210425,ZINC08750867, ZINC14671545 | 通过虚拟筛选和模拟对接选出了这5种分子,可以靶向结合Esbp,形成的复合物具有多个稳定氢键结构,从而破坏Esbp活性影响CLas对铁离子的吸收,起到抑菌的效果 The five molecules were selected by virtual screening and simulated docking,which showed good binding ability to Esbp,and the complexes were structurally stabilized by multiple hydrogen bonds. Esbp inactivity could affect the uptake of iron ions of CLas,which would have antibacterial effects | Saini et al., | ||
细胞膜(脂多糖) Cell mem- brane(lipopolysacchari- des) | 革兰氏阴性菌外膜含脂多糖,脂多糖既可以增强细菌的抗逆性,也可以成为细菌的毒力因子 The outer membrane of Gram-negative bacteria contains lipopolysaccharides,which can either enhance resistance or act as virulence factors | 抗菌肽(AMP) Antimicrobial peptides(AMP) | 抗菌肽SAMP可以在细胞膜形成孔隙结构导致胞质泄露和细胞裂解,向感染黄龙病的大叶橙、甜橙、柠檬分别注射10 μmol · L-1 SAMP,两个月后病菌量相较对照大幅降低,半年内病株恢复长势,新叶没有黄龙病症状 Antimicrobial peptides SAMP can form a pore structure in the cell membrane leading to cytoplasmic leakage and cell lysis. 10 μmol · L-1 SAMP was injected into infected big-leaf oranges,sweet oranges,and lemons respectively. The amount of the CLas was greatly reduced compared with the control after two months,and the diseased plants regained their growth in half a year,and there were no symptoms in the new leaves | Huang et al., |
柑橘种质/品种 Citrus variety | 耐病能力 Disease resistance | 参考文献 Reference |
---|---|---|
十里香 Murraya paniculata(L.)Jack. | 感病后没有显著病症,韧皮部没有胼胝质和淀粉堆积,生物胁迫相关基因和通路的表达上调 The infected plants have no significant disease symptoms,no callus,starch accumulation in the phloem,and up-regulation of the expression of biostress-related genes and pathways in citrus after susceptibility to disease | Liu et al., |
粗柠檬 Citrus jambhiri | 感病后应激反应显著上调,叶中脉的物质转运活性并未受到显著影响 Stress responses were significantly up-regulated in C. jambhiri,and substance transport activity in leaf midveins was not significantly affected | Fan et al., |
澳洲手指酸橙 Citrus australasica | 病果园内澳洲指橙始终未表现出黄龙病症状,嫁接到阳性砧木后再检测病菌浓度依然很低,具有特定的氧化还原控制系统,感病后还能显著上调囊蛋白和PR1蛋白表达 C. australasica never showed symptom in the diseased orchard,and the pathogen concentration remained low when tested again after grafting onto positive rootstocks. They have a specific redox control system that can significantly up-regulate vesicle protein and PR1 protein expression even after disease susceptibility | Weber et al., |
野生柑橘品种 Citrus ichangensis‘2586’ | 黄龙病菌在C. ichangensis中的繁殖速度较慢;与胼胝质堆积、淀粉合成以及光合作用相关的基因在植株感病后仍维持稳态,避免了韧皮部堵塞和养分不足从而表现出耐病 CLas reproduces slowly in C. ichangensis. Genes related to callus accumulation,starch synthesis,and photosynthesis maintain homeostasis even after disease susceptibility,avoiding phloem clogging and nutrient deficiencies. Thus,it showed disease tolerance | Wu et al., |
晚熟温州蜜柑 Citrus unshiu Marc. | 自嫁接到阳性病株后8个月内没有检测到黄龙病菌,叶片颜色和健康对照相似,均为正常的绿色,表现出显著的抗性 C. unshiu did not detect the disease for 8 months since grafting onto the positively diseased plants,and the leaf color was similar to that of healthy plants. This variety showed significant resistance | 刘登全 等, |
澳指檬 Microcitrus australasica (F.Muell.)Swing. | 澳指檬嫁接至感病砂糖橘后多次对黄龙病菌进行检测,结果均为阴性(Ct值 ≥ 40),植株生长正常,叶片无斑驳、黄化等症状 M. australasica was negative (Ct value ≥ 40) for several tests after grafting onto susceptible sugar orange,with normal plant growth and leaf disease | 武晓晓 等, |
胡柚、佛手、金柑 Citrus maxima(Burm)Merr. Citrus medica‘Fingered’ Citrus japonica Thunb. | 感病温州蜜柑枝条嫁接到3个品种,1年内未出现黄化叶片,感病率为0(未进行qPCR检测)Susceptible mandarin branches grafted to these three varieties did not show yellowing leaves within 1 year,and the susceptibility rate was 0 (not tested by qPCR) | 蒋自珍 等, |
表3 耐黄龙病柑橘种质
Table 3 Huanglongbing-tolerant citrus germplasm
柑橘种质/品种 Citrus variety | 耐病能力 Disease resistance | 参考文献 Reference |
---|---|---|
十里香 Murraya paniculata(L.)Jack. | 感病后没有显著病症,韧皮部没有胼胝质和淀粉堆积,生物胁迫相关基因和通路的表达上调 The infected plants have no significant disease symptoms,no callus,starch accumulation in the phloem,and up-regulation of the expression of biostress-related genes and pathways in citrus after susceptibility to disease | Liu et al., |
粗柠檬 Citrus jambhiri | 感病后应激反应显著上调,叶中脉的物质转运活性并未受到显著影响 Stress responses were significantly up-regulated in C. jambhiri,and substance transport activity in leaf midveins was not significantly affected | Fan et al., |
澳洲手指酸橙 Citrus australasica | 病果园内澳洲指橙始终未表现出黄龙病症状,嫁接到阳性砧木后再检测病菌浓度依然很低,具有特定的氧化还原控制系统,感病后还能显著上调囊蛋白和PR1蛋白表达 C. australasica never showed symptom in the diseased orchard,and the pathogen concentration remained low when tested again after grafting onto positive rootstocks. They have a specific redox control system that can significantly up-regulate vesicle protein and PR1 protein expression even after disease susceptibility | Weber et al., |
野生柑橘品种 Citrus ichangensis‘2586’ | 黄龙病菌在C. ichangensis中的繁殖速度较慢;与胼胝质堆积、淀粉合成以及光合作用相关的基因在植株感病后仍维持稳态,避免了韧皮部堵塞和养分不足从而表现出耐病 CLas reproduces slowly in C. ichangensis. Genes related to callus accumulation,starch synthesis,and photosynthesis maintain homeostasis even after disease susceptibility,avoiding phloem clogging and nutrient deficiencies. Thus,it showed disease tolerance | Wu et al., |
晚熟温州蜜柑 Citrus unshiu Marc. | 自嫁接到阳性病株后8个月内没有检测到黄龙病菌,叶片颜色和健康对照相似,均为正常的绿色,表现出显著的抗性 C. unshiu did not detect the disease for 8 months since grafting onto the positively diseased plants,and the leaf color was similar to that of healthy plants. This variety showed significant resistance | 刘登全 等, |
澳指檬 Microcitrus australasica (F.Muell.)Swing. | 澳指檬嫁接至感病砂糖橘后多次对黄龙病菌进行检测,结果均为阴性(Ct值 ≥ 40),植株生长正常,叶片无斑驳、黄化等症状 M. australasica was negative (Ct value ≥ 40) for several tests after grafting onto susceptible sugar orange,with normal plant growth and leaf disease | 武晓晓 等, |
胡柚、佛手、金柑 Citrus maxima(Burm)Merr. Citrus medica‘Fingered’ Citrus japonica Thunb. | 感病温州蜜柑枝条嫁接到3个品种,1年内未出现黄化叶片,感病率为0(未进行qPCR检测)Susceptible mandarin branches grafted to these three varieties did not show yellowing leaves within 1 year,and the susceptibility rate was 0 (not tested by qPCR) | 蒋自珍 等, |
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
陈乃荣, 戴月明, 吴泰旭, 徐彬. 1981. 盐酸四环素等药物对柑桔黄龙病治疗效应. 植物保护学报, 8 (3):163-169.
|
|
[22] |
|
陈善春, 张进仁, 黄自然, 高峰, 陈凤珍, 隆有庆. 1997. 根癌农杆菌介导柞蚕抗菌肽D基因转化柑桔的研究. 中国农业科学, 30 (3):7-14.
|
|
[23] |
|
陈燕玲. 2019. 砂糖橘响应黄龙病菌及热处理胁迫的生理生化特征[博士论文]. 广州: 华南农业大学.
|
|
[24] |
|
陈作义, 沈菊英, 龚祖埙, 陈乃荣, 戴月明. 1980. 柑桔黄龙病病原体及其对抗生素反应的研究. 生物化学与生物物理进展, 12 (2):143-148.
|
|
[25] |
|
陈作义, 沈菊英, 陶世珍, 龚祖埙, 赵学源. 1979. 广西柑桔黄龙病株中类菌原体病原的发现. 生物化学与生物物理学报, 11 (4):389-390.
|
|
[26] |
|
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[27] |
|
程春振, 曾继吾, 钟云, 闫化学, 姜波, 钟广炎. 2013. 柑橘黄龙病研究进展. 园艺学报, 40 (9):1656-1668.
|
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[32] |
|
邓晓玲, 郑永钦, 郑正, 许美容. 2019. 柑橘黄龙病菌基因组学的研究进展. 华南农业大学学报, 40 (5):137-148.
|
|
[33] |
|
[34] |
|
[35] |
|
杜美霞, 庞淑玮, 董丽婷, 莫凯琴, 候梦圆, 王帅, 邹修平. 2024. 柑橘黄龙病菌与寄主互作的分子机制研究进展. 园艺学报, 51 (7):1623-1638.
|
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
Guangxi Citrus Huanglongbing Research Group. 1975. Preliminary report on the therapeutic effects of tetracycline and oxytetracycline against citrus Huanglongbing. South China Fruits,(1):31-34. (in Chinese)
|
广西柑桔黄龙病研究小组. 1975. 利用四环素、土霉素治疗柑桔黄龙病的效果(初报). 中国南方果树,(1):31-34.
|
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
胡党振. 2020. 生防菌处理对柑橘黄龙病植株的影响探究[博士论文]. 武汉: 华中农业大学.
|
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
贾志成, 郑加强, 黄雅杰, 周宏平,
|
|
[57] |
|
蒋迪, 徐昌杰, 陈大明, 张上隆. 2002. 柑橘转基因研究的现状及展望. 果树学报, 19 (1):48-52.
|
|
[58] |
|
姜家琳. 2023. 多粘类芽孢杆菌和小分子化合物对柑橘黄龙病的控制效果分析[博士论文]. 武汉: 华中农业大学.
|
|
[59] |
|
蒋自珍, 袁亦文, 孟幼青, 郑京相. 2006. 不同柑橘品种对柑橘黄龙病抗性试验. 中国植保导刊, 26 (9):23-24.
|
|
[60] |
|
[61] |
|
柯冲. 1979. 柑桔黄龙病与类立克次体及线状病毒的研究初报. 科学通报, 24 (10):463.
|
|
[62] |
|
柯冲, 柯穗, 李开本. 1991. 柑桔黄龙病病原形态与性质的研究. 福建省农科院学报, 6 (2):1-10.
|
|
[63] |
|
柯冲, 王芝生. 1988. 应用抗生素防治柑桔黄龙病的研究. 福建省农科院学报, 3 (1):1-10.
|
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
林孔湘. 1956. 柑桔黄梢(黄龙)病研究Ⅱ.关于病原的探讨. 植物病理学报,2 (1):13-45.
|
|
[69] |
|
林孔湘. 1963. 谈柑桔黄梢(黄龙)病的防治. 植物保护,(3):122-124.
|
|
[70] |
|
林孔湘, 骆学海. 1965. 柑桔黄稍黄龙病热治疗的初步研究. 植物保护学报, 4 (2):169-175.
|
|
[71] |
|
林孔湘, 郑儒钰. 1964. 柑桔黄梢龙病毒和柑桔枝条耐热力的初步研究. 植物病理学报, 7 (1):61-65.
|
|
[72] |
|
林先沾, 柯冲. 1986. 建立柑桔无病采穗母本园和培育无病苗的试验报告. 福建省农科院学报, 1 (2):67-75.
|
|
[73] |
|
[74] |
|
刘登全, 崔朝宇, 蒋军喜, 龙珑. 2014. 不同柑橘品种对黄龙病的抗性鉴定. 江西农业大学学报,(1):97-101.
|
|
[75] |
|
龙钦贤, 庄贤兰, 邱柱石, 苏维芳, 赵学源. 1981. 加压注射四环素族抗生素治疗甜橙黄龙病树的效果. 中国柑桔,(1):29-32.
|
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
罗志达. 1991. 用加热四环素治疗柑桔黄龙病芽条的试验初报. 华南农业大学学报, 12 (2):38-42.
|
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
王以燕, 袁善奎, 苏天运, 张一宾. 2019. 我国生物源农药的登记和发展现状. 农药, 58 (1):1-5,10.
|
|
[110] |
|
[111] |
|
[112] |
|
吴如健, 柯冲. 2007. 柑桔黄龙病治理试验及综合防治措施. 江西农业学报, 19 (9):69-71.
|
|
[113] |
|
武晓晓, 娄兵海, 邓崇岭, 唐艳. 2023. 澳指檬对柑橘黄龙病抗性的初步评价. 南方园艺, 34 (5):77.
|
|
[114] |
|
许兰珍, 何永睿, 彭爱红, 雷天刚, 刘小丰, 邹修平, 姚利晓, 陈善春. 2013. 抗菌肽Shiva A基因在转基因柑橘无性繁殖后代中的遗传与表达分析. 农业生物技术学报, 21 (7):820-827.
|
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
杨川毓. 2015. 柑橘黄龙病的化学防治以及宏基因组分析[博士论文]. 福州: 福建农林大学.
|
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
[132] |
|
[133] |
|
张建桃, 林耿纯, 陈鸿, 文晟, 尹选春, 邓小玲. 2019. 柑橘黄龙病远红外热处理温度场分布特性试验研究. 农业机械学报, 50 (10):175-188.
|
|
[134] |
|
张清杰, 张景宁, 黄自然, 谭石慈, 郭周仪. 1995. 柞蚕抗菌肽对柑桔黄龙病及溃疡病病原菌的杀菌作用. 蚕业科学, 21 (2):77-81.
|
|
[135] |
|
[136] |
|
赵学源, 蒋元晖. 2007. 柑橘黄龙病防治研究项目回顾与展望. 中国农业科学, 40(增刊1):199-206.
|
|
[137] |
|
赵学源, 邱柱石, 苏维芳, 蒋元晖. 1982. 四环素浸泡芽条消除柑桔黄龙病的持续效果. 植物保护学报, 9 (1):67-68.
|
|
[138] |
|
赵学源, 邱柱石, 苏维芳, 蒋元晖. 1981. 柑桔黄龙病对青霉素和四环素的反应. 中国柑桔,(4):17.
|
|
[139] |
|
[140] |
|
[141] |
|
[142] |
|
[143] |
|
[144] |
|
[1] | 方芳, 陈晓虹, 王成, 郑正, 邓晓玲. 柑橘黄龙病对果实症状与品质的影响及分子机制研究进展[J]. 园艺学报, 2025, 52(8): 2046-2058. |
[2] | 吕若亚, 李云, 郑永钦, 邓晓玲, 郑正. 黄龙病菌在柑橘果实橘络中的分布[J]. 园艺学报, 2023, 50(5): 1110-1117. |
[3] | 李镇希, 潘睿翾, 许美容, 郑正, 邓晓玲. 柑橘黄龙病菌双重实时荧光PCR检测方法的建立[J]. 园艺学报, 2023, 50(1): 188-196. |
[4] | 贾瑾, 徐云龙, 周佳乐, 杨小芬, 钟永辉, 曾继吾, 洪霓, 王国平, 彭抒昂, 丁芳. ‘Cocktail’葡萄柚黄龙病菌检测及鉴定[J]. 园艺学报, 2022, 49(3): 590-596. |
[5] | 龙俊宏,赵 珂,杜美霞,谢 竹,陈善春,何永睿,邹修平*. 柑橘中黄龙病菌效应子SDE70的表达特征及寄主互作蛋白解析[J]. 园艺学报, 2020, 47(8): 1451-1462. |
[6] | 吴 柳*,白晓晶*,文庆利,谢 竹,何永睿,王丽娟,陈善春,邹修平**. 柑橘黄龙病病原菌Las在叶圆片嫁接接种的‘锦橙’中早期扩散研究[J]. 园艺学报, 2018, 45(11): 2121-2128. |
[7] | 胡 燕,王雪峰*,周常勇*. 柑橘黄龙病菌亚洲种、虫媒及植物寄主互作研究进展[J]. 园艺学报, 2016, 43(9): 1688-1698. |
[8] | 苏华楠, 王雪峰, 黄爱军, 李中安, 唐科志, 周常勇. 高质量提取柑橘样品中病原总核酸方法的建立[J]. 园艺学报, 2014, 41(11): 2342-2352. |
[9] | 程春振1,2,曾继吾1,钟 云1,闫化学1,姜 波1,钟广炎1,*. 柑橘黄龙病研究进展[J]. 园艺学报, 2013, 40(9): 1656-1668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司