| [1] |
Abe-Hara C, Yamada K, Wada N, Ueta R, Hashimoto R, Osakabe K, Osakabe Y. 2021. Effects of the sliaa9 mutation on shoot elongation growth of tomato cultivars. Frontiers in Plant Science, 12:627832.
|
| [2] |
Ampomah-Dwamena C, Morris B A, Sutherland P, Veit B, Yao J L. 2002. Down-regulation of TM29,a tomato SEPALLATA homolog,causes parthenocarpicfruit development and floral reversion. Plant Physiology, 130 (2):605-617.
doi: 10.1104/pp.005223
pmid: 12376628
|
| [3] |
Beraldi D, Picarella M E, Soressi G P, Mazzucato A. 2004. Fine mapping of the parthenocarpic fruit(pat)mutation in tomato. Theoretical & Applied Genetics, 108 (2):209-216.
|
| [4] |
Breitel D A, Chappell-Maor L, Meir S, Panizel I, Puig C P, Hao Y W, Yifhar T, Yasuor H, Zouine M, Bouzayen M. 2016. AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. Plos Genetics, 12 (3):e1005903.
|
| [5] |
Carrera E, Ruiz-Rivero O, Peres L E P, Atares A, Garcia-Martinez J L. 2012. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology,cell division and expansion,and the auxin-signaling pathway during fruit-set and development. Plant Physiology, 160 (3):1581-1596.
doi: 10.1104/pp.112.204552
pmid: 22942390
|
| [6] |
Chen Xuehao, Tao Jun, Cao Beisheng. 2001. Parthenocarpic types of horticultural crops. Bulletin of Biology,(9):6-7. (in Chinese)
|
|
陈学好, 陶俊, 曹碚生. 2001. 园艺作物单性结实的类型. 生物学通报,(9):6-7.
|
| [7] |
Clepet C, Devani R S, Boumlik R, Hao Y W, Morin H, Marcel F, Verdenaud M, Mania B, Brisou G, Citerne S. 2021. The miR166-SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. Molecular Plant, 14 (7):1185-1198.
|
| [8] |
Crane J C, Van Overbeak J, 1965. Kinin-induced parthenocarpy in the fig,Ficus calica L.,Science, 147 (3664):146-147.
|
| [9] |
da Silva E M, Silva G, Bidoia D B, Azevedo M D, de Jesus F A, Pino L E, Peres L E P, Carrera E, Lopez-Diaz I, Nogueira F T S. 2017. microRNA159-targeted SIGAMYB transcription factors are required for fruit set in tomato. Plant Journal, 92 (1):95-109.
|
| [10] |
Daminato M, Masiero S, Resentini F, Lovisetto A, Casadoro G. 2014. Characterization of TM8,a MADS-box gene expressed in tomato flowers. Bmc Plant Biology, 14:319.
|
| [11] |
Davière J M, Achard P. 2013. Gibberellin signaling in plants. Development, 140:1147-1151.
|
| [12] |
Du Chaojin, Zhang Hanyao, Luo Xinping, Song Yunlian, Bi Jue, Wang Yuequan, Zhang Huiyun. 2024. Progress in gene regulation of plant floral organ development. Journal of Plant Genetic Resources, 25 (2):151-161. (in Chinese)
doi: 10.13430/j.cnki.jpgr.20230811001
|
|
杜朝金, 张汉尧, 罗心平, 宋云连, 毕珏, 王跃全, 张惠云. 2024. 基因调控植物花器官发育的研究进展. 植物遗传资源学报, 25 (2):151-161.
|
| [13] |
Friml J. 2010. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 89:231-235.
doi: 10.1016/j.ejcb.2009.11.003
pmid: 19944476
|
| [14] |
Fos M, Nuez F, Garcia-Martinez J L. 2000. The gene pat-2,which induces natural parthenocarpy,alters the gibberellin content in unpollinated tomato ovaries. Plant Physiology, 122 (2):471-479.
doi: 10.1104/pp.122.2.471
pmid: 10677440
|
| [15] |
Fos M, Proaño K, Nuez F, Garcia-Martinez J L. 2001. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant, 111 (4):545-550.
|
| [16] |
Fukudome C, Takisawa R, Nakano R, Kusano M, Kobayashi M, Motoki K, Nishimura K, Nakazaki T. 2022. Analysis of mechanism regulating high total soluble solid content in the parthenocarpic tomato fruit induced by pat-k gene. Scientia Horticulturae, 301:111070.
|
| [17] |
Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282:2226-2230.
doi: 10.1126/science.282.5397.2226
pmid: 9856939
|
| [18] |
Gan ZY, Feng Y, Wu T, Wang Y, Xu X F, Zhang X Z, Han Z H. 2019. Downregulation of the auxin transporter gene SlPIN8 results in pollen abortion in tomato. Plant Molecular Biology, 99 (6):561-573.
|
| [19] |
García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa M P, Hedden P, Gong F, García-Martínez J L. 2012. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth,higher yield,and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63:5803-5813.
doi: 10.1093/jxb/ers229
pmid: 22945942
|
| [20] |
Geuten K, Irish V. 2010. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. The Plant Cell, 22 (8):2562-2578.
doi: 10.1105/tpc.110.076026
pmid: 20807882
|
| [21] |
Gillaspy G, Ben-David H, Gruissem W. 1993. Fruits:a developmental perspective. The Plant Cell, 5:1439-1451.
doi: 10.1105/tpc.5.10.1439
pmid: 12271039
|
| [22] |
Gimenez E, Castañeda L, Pineda B, Pan IL, Moreno V, Angosto T, Lozano R. 2016. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology, 91 (4-5):513-531.
doi: 10.1007/s11103-016-0485-4
pmid: 27125648
|
| [23] |
Giménez E, Pineda B, Capel J, Antón M, Atarés A, Pérez-Martín F, García-Sogo B, Angosto T, Moreno V, Lozano R. 2010. Functional analysis of the Arlequin mutant corroborates the essential role of the ARLEQUIN/TAGL1 gene during reproductive development of tomato. PLoS ONE, 5 (12):e14427.
|
| [24] |
Goldental-Cohen S, Israeli A, Ori N, Yasuor H. 2017. Auxin response dynamics during wild-type and entire flower development in tomato. Plant and Cell Physiology, 58 (10):1661-1672.
doi: 10.1093/pcp/pcx102
pmid: 29016944
|
| [25] |
Gorguet B, Eggink P M, Ocaña J, Tiwari A, Schipper D, Finkers R, Visser R G F, Heusden A W V. 2008. Mapping and characterization of novel parthenocarpy QTLs in tomato. Theoretical & Applied Genetics, 116 (6):755-767.
|
| [26] |
Guo X H, Hu Z L, Yin W C, Yu X H, Zhu Z G, Zhang J L, Chen G P. 2016. The tomato floral homeotic protein FBP1-like gene, SlGLO1,plays key roles in petal and stamen development. Scientific Reports, 6:20454.
|
| [27] |
Gupta S K, Barg R, Arazi T. 2021. Tomato agamous-like6 parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator KLUH. Plant Physiology, 185 (3):969-984.
|
| [28] |
Gustafson F G. 1936. Inducement of fruit development by growth-promoting chemicals. Proceedings of the National Academy of Sciences of the United States of America, 22 (11):628-636.
|
| [29] |
Hayata Y, Niimi Y, Iwasaki N. 1995. Synthetic cytokinin-1(2-chloro-4-pyridyl)-3-phenylurea(CPPU)promotes fruit-set and induces parthenocarpy in watermelon. Journal of the American Society for Horticultural Science, 120:997-1000.
|
| [30] |
He M, Song S W, Zhu X Y, Lin Y X, Pan Z L, Chen L, Chen D, Hu G J, Huang B W, Chen M Y. 2021. SlTPL1 silencing induces facultative parthenocarpy in tomato. Frontiers in Plant Science, 12:672232.
|
| [31] |
Hu J H, Israeli A, Ori N, Sun T P. 2018. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. Plant Cell, 30 (8):1710-1728.
|
| [32] |
Hu J H, Li X, Sun T P. 2023. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. Nature Plants, 9 (5):706-719.
doi: 10.1038/s41477-023-01396-y
pmid: 37037878
|
| [33] |
Huang B W, Routaboul J M, Liu M C, Deng W, Maza E, Mila I, Hu G J, Zouine M, Frasse P, Vrebalov J T. 2017. Overexpression of the class D MADS-box gene SlAGL11 impacts fleshy tissue differentiation and structure in tomato fruits. Journal of Experimental Botany, 68 (17):4869-4884.
|
| [34] |
Joldersma D, Liu Z C. 2018. The making of virgin fruit:the molecular and genetic basis of parthenocarpy. Journal of Experimental Botany, 69 (5):955-962.
doi: 10.1093/jxb/erx446
pmid: 29325151
|
| [35] |
Jong M D, Wolters-Arts M, García-Martínez J L, Mariani C, Vriezen W H. 2011. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7(SlARF7)mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. Journal of Experimental Botany, 62 (2):617-626.
|
| [36] |
Kai W B, Fu Y, Wang J, Liang B, Li Q, Leng P. 2019. Functional analysis of SlNCED1 in pistil development and fruit set in tomato(Solanum lycopersicum L.). Scientific Reports, 9:16943.
|
| [37] |
Kim J S, Ezura K, Lee J, Ariizumi T, Ezura H. 2019. Genetic engineering of parthenocarpic tomato plants using transient SlIAA9 knockdown by novel tissue-specific promoters. Scientific Reports, 9:18871.
|
| [38] |
Kim J S, Ezura K, Lee J, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. 2020. The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. Journal of Plant Physiology, 252:153238.
|
| [39] |
Klap C, Yeshayahou E, Bolger A M, Arazi T, Gupta S K, Shabtai S, Usadel B, Salts Y, Barg R. 2017. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal, 15 (5):634-647.
|
| [40] |
Lavy M, Estelle M. 2016. Mechanisms of auxin signaling. Development, 143:3226-3229.
doi: 10.1242/dev.131870
pmid: 27624827
|
| [41] |
Leydon A R, Wang W, Gala H P, Gilmour S, Juarez-Solis S, Zahler M L, Zemke J E, Zheng N, Nemhauser J L. 2021. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. Elife, 10:66739.
|
| [42] |
Lin Z, Arciga-Reyes L, Zhong S, Alexander L, Grierson D. 2008. SlTPR1,a tomato tetratricopeptide repeat protein,interacts with the ethylene receptors NR and LeETR1,modulating ethylene and auxin responses and development. International Review of Research in Mental Retardation, 59 (15):4271-4287.
|
| [43] |
Liu Y H, Offler C E, Ruan Y L. 2016. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiology, 172 (1):163-180.
|
| [44] |
Liu C, Xu Z, Chua N H. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. The Plant Cell, 5:621-630.
doi: 10.1105/tpc.5.6.621
pmid: 12271078
|
| [45] |
Ito T, Okada K, Fukazawa J, Takahashi Y. 2018. DELLA-dependent and -independent gibberellin signaling. Plant Signaling & Behavior, 13:e1445933.
|
| [46] |
Mao Z, Yu Q, Zhen W, Guo J, Hu Y, Gao Y, Lin Z. 2002. Expression of ipt gene driven by tomato fruit specific promoter and its effects on fruit development of tomato. Chinese Science Bulletin, 47:928-932.
|
| [47] |
Marti C, Orzaez D, Ellul P, Moreno V, Carbonell J, Granell A. 2007. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant Journal, 52 (5):865-876.
|
| [48] |
Martinelli F, Uratsu S L, Reagan R L, Chen Y, Tricoli D, Fiehn O, Rocke D M, Gasser C S, Dandekar A M. 2009. Gene regulation in parthenocarpic tomato fruit. Journal of Experimental Botany, 60 (13):3873-3890.
doi: 10.1093/jxb/erp227
pmid: 19700496
|
| [49] |
Martínez-Bello L, Moritz T, López-Díaz I. 2015. Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. Journal of Experimental Botany, 66 (19):5897-5910.
doi: 10.1093/jxb/erv300
pmid: 26093022
|
| [50] |
Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S. 2012. Roles and regulation of cytokinins in tomato fruit development. Journal of Experimental Botany, 63 (15):5569-5579.
doi: 10.1093/jxb/ers207
pmid: 22865911
|
| [51] |
Matsuo S, Miyatake K, Endo M, Urashimo S, Kawanishi T, Negoro S, Shimakoshi S, Fukuoka H. 2020. Loss of function of the Pad-1 aminotransferase gene,which is involved in auxin homeostasis,induces parthenocarpy in Solanaceae plants. Proceedings of the National Academy of Sciences of the United States of America, 117 (23):12784-12790.
|
| [52] |
Molesini B, Pandolfini T, Rotino GL, Dani V, Spena A. 2009. Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol, 149 (1):534-548.
doi: 10.1104/pp.108.131367
pmid: 18987210
|
| [53] |
Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie A R, Bellini C, Rothan C, Lemaire-Chamley M. 2012. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany, 63 (13):4901-4917.
doi: 10.1093/jxb/ers167
pmid: 22844095
|
| [54] |
Nambeesan S U, Mattoo A K, Handa A K. 2019. Nexus between spermidine and floral organ identity and fruit/seed set in tomato. Frontiers in Plant Science, 10:1033.
doi: 10.3389/fpls.2019.01033
pmid: 31608074
|
| [55] |
Noll F. 1902. Über fruchtbildung ohne vorausgegangene bestäubung(parthenocapie)bei der gurke, Bonn:Sitzber d Niederh Gesellsch f Naturu,149-162.
|
| [56] |
Nuez F, Costa J, Cuartero J. 1986. Genetics of the parthenocarpy for tomato varieties sub-arctic plenty,75/59 and severianin. Zeitschrift fur Pflanzenzuchtung Journal of plant breeding, 96:200-206.
|
| [57] |
Nunome T. 2016. Map-based cloning of tomato parthenocarpic pat-2 gene. Regulation of Plant Growth & Development, 51 (1):37-40.
|
| [58] |
Nunome T, Honda A, Ohyama H, Fukuoka H, Yamaguchi K M. 2015. Parthenocarpy regulation gene and use thereof. Patent WO:EP2883955 (A1)、2015-06-17.
|
| [59] |
Okabe Y, Yamaoka T, Ariizumi T, Ushijima K, Kojima M, Takebayashi Y, Sakakibara H, Kusano M, Shinozaki Y, Pulungan S I, Kubo Y, Nakano R, Ezura H. 2019. Aberrant stamen development is associated with parthenocarpic fruit set through up-regulation of gibberellin biosynthesis in tomato. Plant and Cell Physiology, 60 (1):38-51.
doi: 10.1093/pcp/pcy184
pmid: 30192961
|
| [60] |
Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi G P, Mazzucato A. 2007. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226 (4):877-888.
doi: 10.1007/s00425-007-0533-z
pmid: 17503074
|
| [61] |
Pandolfini T, Rotino GL, Camerini S, Defez R, Spena A. 2002. Optimisation of transgene action at the post-transcriptional level:high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnology, 2:1.
pmid: 11818033
|
| [62] |
Pascual L, Blanca J M., Cañizares J, Nuez F. 2009. Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biol, 9:67.
doi: 10.1186/1471-2229-9-67
pmid: 19480705
|
| [63] |
Peer W A, Murphy A S. 2007. Flavonoids and auxin transport:modulators or regulators? Trends Plant Sci, 12:556-563.
|
| [64] |
Pnueli L, Hareven D, Broday L, Lifschitz H E. 1994a. The TM5 MADS-box gene mediates organ differentiation in the three inner whorls of tomato flowers. The Plant Cell, 6 (2):175-186.
|
| [65] |
Pnueli L, Hareven D, Rounsley S D, Yanofsky M F, Lifschitz E. 1994b. Isolation of tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6 (2):163-173.
|
| [66] |
Ren Z X, Li Z G, Miao Q, Yang Y W, Deng W, Hao Y W. 2011. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. Journal of Experimental Botany, 62 (8):2815-2826.
|
| [67] |
Ribelles C, Garcia-Sogo B, Yuste-Lisbona FJ, Atares A, Castaneda L, Capel C, Lozano R, Moreno V, Pineda B. 2019. Alq mutation increases fruit set rate and allows the maintenance of fruit yield under moderate saline conditions. Journal of Experimental Botany, 70 (20):5731-5744.
doi: 10.1093/jxb/erz342
pmid: 31328220
|
| [68] |
Schijlen E G, de Vos C H, Martens S, Jonker H H, Rosin F M, Molthoff J W, Tikunov Y M, Angenent G C, van Tunen A J, Bovy A G. 2007. RNA interference silencing of chalcone synthase,the first step in the flavonoid biosynthesis pathway,leads to parthenocarpic tomato fruits. Plant Physiology, 144 (3):1520-1530.
doi: 10.1104/pp.107.100305
pmid: 17478633
|
| [69] |
Schubert R, Dobritzsch S, Gruber C, Hause G, Athmer B, Schreiber T, Marillonnet S, Okabe Y, Ezura H, Acosta I F. 2019. Tomato MYB 21 acts in ovules to mediate jasmonate-regulated fertility. The Plant Cell, 31 (5):1043-1062.
doi: 10.1105/tpc.18.00978
pmid: 30894458
|
| [70] |
Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250 (4983):931-936.
doi: 10.1126/science.250.4983.931
pmid: 17746916
|
| [71] |
Serrani J C, Carrera E, Ruiz-Rivero O, Gallego-Giraldo L, Peres L E P, Garcia-Martinez J L. 2010. Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. Plant Physiology, 153 (2):851-862.
doi: 10.1104/pp.110.155424
pmid: 20388661
|
| [72] |
Serrani J C, Ruiz-Rivero O, Fos M, García-Martínez J L. 2008. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. The Plant Journal, 56 (6):922-934.
doi: 10.1111/j.1365-313X.2008.03654.x
pmid: 18702668
|
| [73] |
Shinozaki Y, Beauvoit B P, Takahara M, Hao S H, Ezura K, Andrieu M H, Nishida K, Mori K, Suzuki Y, Kuhara S. 2020. Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 117 (38):23970-23981.
|
| [74] |
Shinozaki Y, Ezura H, Ariizumi T. 2018. The role of ethylene in the regulation of ovary senescence and fruit set in tomato(Solanum lycopersicum). Plant Signaling & Behavior, 13 (4):e1146844.
|
| [75] |
Shinozaki Y, Hao S H, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, Fei Z J, Zhong S L, Giovannoni J J, Rose J K C. 2015. Ethylene suppresses tomato(Solanum lycopersicum)fruit set through modification of gibberellin metabolism. The Plant Journal, 83 (2):237-251.
|
| [76] |
Soost R K, Burnett R H. 1961, Effect of gibberellin on yield and fruit characteristics of Clementine mandarin. Proc Am Hortic Sci, 77:194-201.
|
| [77] |
Swarup R,. Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science, 10:1306.
doi: 10.3389/fpls.2019.01306
pmid: 31719828
|
| [78] |
Takisawa R, Kusaka H, Nishino Y, Miyashita M, Miyagawa H, Nakazaki T, Kitajima A. 2019. Involvement of indole-3-acetic acid metabolism in the early fruit development of the parthenocarpic tomato cultivar,MPK-1. Journal of Plant Growth Regulation, 38 (1):189-198.
doi: 10.1007/s00344-018-9826-7
|
| [79] |
Takisawa R, Maruyama T, Nakazaki T, Kataoka K, Saito H, Koeda S, Nunome T, Fukuoka H, Kitajima A. 2017. Parthenocarpy in the tomato(Solanum lycopersicum L.) cultivar‘MPK-1’is controlled by a novel parthenocarpic gene. Horticulture Journal, 86 (4):487-492.
|
| [80] |
Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A. 2018. The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato(Solanum lycopersicum L.). BMC Plant Biology, 18:72.
doi: 10.1186/s12870-018-1285-6
pmid: 29699487
|
| [81] |
Teale W D, Paponov I A, Palme K. 2006. Auxin in action:signalling,transport and the control of plant growth and development. Nat Rev Mol Cell Biol, 7:847-859.
|
| [82] |
Uma S, Sasikala R, Sharmiladevi S, Backiyarani S, Saraswathi MS. 2020. Unravelling the regulatory network of transcription factors in parthenocarpy. Scientia Horticulturae, 261:108920.
|
| [83] |
Wang H, Jones B, Li ZG, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech J C, Bouzayen M. 2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell, 17 (10):2676-2692.
|
| [84] |
Xiao H, Radovich C, Welty N, Hsu J, Li D, Meulia T, van der Knaap E. 2009. Integration of tomato reproductive developmental landmarks and expression profiles,and the effect of SUN on fruit shape. BMC Plant Biol, 9:49.
doi: 10.1186/1471-2229-9-49
pmid: 19422692
|
| [85] |
Yang Y, Tang K, Datsenka T U, Liu W S, Lv S H, Lang Z B, Wang X G, Gao J H, Wang W, Nie W F. 2019. Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. Journal of Integrative Plant Biology, 61 (12):1224-1242.
doi: 10.1111/jipb.12778
|
| [86] |
Zhang J H, Chen R G, Xiao J H, Qian C J, Wang T T, Li H X, Bo O Y, Ye Z B. 2007. A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum)entire mutant. Journal of Plant Research, 120 (6):671-678.
|