https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2010, Vol. 37 ›› Issue (1): 135-140.

• 研究报告 • 上一篇    下一篇

大岩桐高频再生体系建立的两种途径

徐全乐1, 3 ; 谢亚红2 ; 刘文婷2 ;阮美煜3 ; 胡鑫1, 3; 贾海燕3 ;王崇英3*   

  1. (1西北农林科技大学生命科学学院, 陕西杨凌712100; 2西安市园林研究所, 西安710065; 3兰州大学生命科学学院细胞生物学研究所, 兰州730000)
  • 收稿日期:2009-06-18 修回日期:2009-11-23 出版日期:2010-01-25 发布日期:2010-01-25
  • 通讯作者: 王崇英

Two Different Pathways for the High-efficiency Plant Regeneration of Gloxinia

XU Quan-le1, 3 ;XIE Ya2hong2 ;LIU Wen-ting2 ;RUAN Mei-yu3;HU Xin1, 3;JIA Hai-yan3 ; WANG Chong-ying3*   

  1. (1College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China; 2Xi'an Institute of Garden, Xi'an710065, China; 3 Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China)
  • Received:2009-06-18 Revised:2009-11-23 Online:2010-01-25 Published:2010-01-25
  • Contact: WANG Chong-ying

摘要: 采用大岩桐(Sinningia speciosa) 的叶片、叶柄和根外植体, 经过两种途径建立大岩桐的高效离体再生体系。第1种途径是: 外植体先形成愈伤组织, 愈伤组织分化出不定芽, 再生成不定根, 进而形成再生苗; 第2种途径是: 外植体先形成少量愈伤组织和根, 再产生不定芽, 进而形成再生苗。第1种途径所采用的培养基MS +BA 2.0 mg·L - 1 +NAA 0.2 mg·L - 1 +蔗糖30 g·L - 1 , 芽诱导率达到99.04% , 根诱导率达到98.81% , 每块外植体分化的不定芽数达5.53个; 第2种途径中以MS +NAA 1.0 mg·L - 1 +蔗糖30 g·L - 1为最佳培养基, 芽诱导率达到90.38% , 根诱导率达到100% , 每块外植体分化的不定芽数达2.44个。在3种外植体中以叶片的再生频率最高。经过连续的组织培养, 在大岩桐的再生苗中得到了一些表型变异植株, 包括叶片形态的改变, 植株叶序的改变以及花的改变。其中以叶序和花的改变最有价值,可以为叶序调控机理和成花及花变异机理研究提供良好材料。

关键词: 大岩桐, 再生途径, 组织培养, 自发突变, 叶序

Abstract: Gloxinia was efficiently plant-regenerated using its leaf, petiole and root segements as explants via two different organ biogenesis pathways. In the first pathway, the three types of explants all first formed callus and adventitious buds on Murashige and Skoog (MS) medium with 6-benzylaminopurine (BA) andα-naphthalene acetic acid (NAA) , and the buds then produced roots after transformed onto the same medium.The optimal hormone combination was 2.0 mg·L - 1 BA + 0.2 mg·L - 1 NAA, at which 99.04% of the explants produced buds, 5.53 buds per explants at average, and 98.81%of the buds formed roots. In the second pathway, all the types of explants first produced callus and roots on MS medium with NAA alone, and the roots later formed buds on the same medium. The optimal NAA level was 1.0 mg·L - 1 , at which 90.38% of the explants produced buds, 2.44 shoots per explant on average, and 100% of the root then formed buds. The leaf explants appearred the best. In addition, some mutants with the changed phyllotaxy was found after generations of subcuture. This mutant may be very useful for studying the molecular genetic mechanism of plant phyllotaxis patterning.

Key words: Sinningia speciosa, regeneration pathway, tissue culture, spontaneous mutantion, phyllotaxis

中图分类号: