园艺学报 ›› 2021, Vol. 48 ›› Issue (2): 336-346.doi: 10.16420/j.issn.0513-353x.2020-0151
俞蕾1, 周雅1, 宗宇1,2, 张颖1, 邱佳琪1, 李永强1,2, 杨莉1,2,*(), 郭卫东1,2,*()
收稿日期:
2020-05-08
修回日期:
2020-08-25
出版日期:
2021-02-25
发布日期:
2021-03-09
通讯作者:
杨莉,郭卫东
E-mail:yangli@zjnu.edu.cn;gwd@zjnu.cn
基金资助:
YU Lei1, ZHOU Ya1, ZONG Yu1,2, ZHANG Ying1, QIU Jiaqi1, LI Yongqiang1,2, YANG Li1,2,*(), GUO Weidong1,2,*()
Received:
2020-05-08
Revised:
2020-08-25
Online:
2021-02-25
Published:
2021-03-09
Contact:
YANG Li,GUO Weidong
E-mail:yangli@zjnu.edu.cn;gwd@zjnu.cn
摘要:
以高丛越橘(Vaccinium corymbosum)大果型品种‘奥尼尔’和小果型品种‘蓝雨’为试材,测定花芽膨大与果实发育期间生长曲线及成熟果实的部分生理指标;开展包含PLAC8保守结构域的FWL(fruit weight like)基因全基因组鉴定与序列分析,并应用实时荧光定量PCR法检测VcFWL/PLAC8基因亚家族成员在花芽膨大与果实发育进程中的相对表达水平。结果表明:‘奥尼尔’果实单果质量与横径自S2期起均显著高于‘蓝雨’,其成熟果实中心室数、单果种子数及种子质量也显著高于‘蓝雨’果实。越橘VcFWL/PLAC8家族包含11个成员,分布于10条染色体上,结构分析显示这些基因均包含2 ~ 3个外显子。大部分VcFWL/PLAC8基因包含高度保守的结构域,聚类分析可将其分为3个亚家族,其中B和C亚家族成员间高度保守。qPCR分析表明A与C亚家族基因的表达模式和越橘花芽与果实发育进程中细胞增殖趋势一致,B亚家族基因的表达丰度较低,推测VcFWL/PLAC8基因可能通过不同的机制和途径参与调控果实的生长发育。
中图分类号:
俞蕾, 周雅, 宗宇, 张颖, 邱佳琪, 李永强, 杨莉, 郭卫东. 越橘FWL/PLAC8家族基因特征及表达分析[J]. 园艺学报, 2021, 48(2): 336-346.
YU Lei, ZHOU Ya, ZONG Yu, ZHANG Ying, QIU Jiaqi, LI Yongqiang, YANG Li, GUO Weidong. Characteristic and Relative Expression Pattern Analysis of FWL/PLAC8 Family in Blueberry[J]. Acta Horticulturae Sinica, 2021, 48(2): 336-346.
引物名称 Primer name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer | 扩增长度/bp Predicted length |
---|---|---|---|
A subfamily | TCAGACATCCTTCCCACTAACC | CCGTCGCAGGAGACGTAG | 138 |
B subfamily | CCAGGGTTTCGCTCTCCTTCC | AGCTCCCTTGGCCTGCGG | 186 |
C subfamily | TCTGCGAAAGGTCTGGAGAT | CATGGCAACCAACATTTCAG | 285 |
VcGAPDH | CGGCTACTTACGAGCAAATCAA | TTCAGTGTAGCCCAAAATTCCTTT | 80 |
表1 qPCR引物信息
Table 1 The primer sequences for qPCR analysis
引物名称 Primer name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer | 扩增长度/bp Predicted length |
---|---|---|---|
A subfamily | TCAGACATCCTTCCCACTAACC | CCGTCGCAGGAGACGTAG | 138 |
B subfamily | CCAGGGTTTCGCTCTCCTTCC | AGCTCCCTTGGCCTGCGG | 186 |
C subfamily | TCTGCGAAAGGTCTGGAGAT | CATGGCAACCAACATTTCAG | 285 |
VcGAPDH | CGGCTACTTACGAGCAAATCAA | TTCAGTGTAGCCCAAAATTCCTTT | 80 |
图2 ‘奥尼尔’与‘蓝雨’越橘花芽膨大与果实发育进程中花果质量及纵横径生长曲线
Fig. 2 Growth curves of single flower/fruit mass,horizontal and vertical diameters during Vaccinium corymbosum ‘O’Neal’and‘Bluerain’flower bud and fruit development ** P < 0.01.
品种 Cultivar | 百粒种子质量/g Weight / 100 seeds | 单果种子数 Seed number | 单果种子质量/g Seed weight pre fruit | 心室数比例/% Locule number | |||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | ||||
奥尼尔O’Neal | 0.04 ± 0.00 | 83.00 ± 4.06** | 0.036 ± 0.007** | 57.39 | 21.09 | 16.52 | |
蓝雨Bluerain | 0.04 ± 0.00 | 30.42 ± 8.31 | 0.012 ± 0.004 | 1.64 | 98.36 |
表2 ‘奥尼尔’与‘蓝雨’越橘成熟果实部分生理指标分析及心室数统计
Table 2 Conventionally physicochemical indexes and locule number of Vaccinium corymbosum‘O’Neal’and‘Bluerain’mature fruit
品种 Cultivar | 百粒种子质量/g Weight / 100 seeds | 单果种子数 Seed number | 单果种子质量/g Seed weight pre fruit | 心室数比例/% Locule number | |||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | ||||
奥尼尔O’Neal | 0.04 ± 0.00 | 83.00 ± 4.06** | 0.036 ± 0.007** | 57.39 | 21.09 | 16.52 | |
蓝雨Bluerain | 0.04 ± 0.00 | 30.42 ± 8.31 | 0.012 ± 0.004 | 1.64 | 98.36 |
基因名称 Gene name | 染色体位置 Chromosome location | CDS/bp | 外显子数 Exon number | 大小/aa Size | 分子量/kD Molecular weight | 等电点 pI |
---|---|---|---|---|---|---|
gene-169.8 | VaccDscaff5:16978476..16983996- | 561 | 3 | 186 | 20.39 | 5.60 |
gene-244.19 | VaccDscaff8:24434249..24439769+ | 693 | 2 | 230 | 25.72 | 4.92 |
gene-228.26 | VaccDscaff10:22828768..22834442+ | 672 | 4 | 223 | 24.22 | 5.35 |
gene-180.23 | VaccDscaff1:18011712..18017230- | 777 | 3 | 258 | 27.84 | 8.12 |
gene-48.40 | VaccDscaff27:4876429..4880014+ | 741 | 3 | 246 | 26.38 | 5.40 |
gene-85.17 | VaccDscaff17:8569670..8572170+ | 657 | 2 | 218 | 23.42 | 8.54 |
gene-85.18 | VaccDscaff17:8572400..8573369+ | 396 | 2 | 131 | 14.60 | 6.27 |
gene-305.30 | VaccDscaff34:30578948..30582561- | 738 | 3 | 246 | 26.40 | 5.37 |
gene-296.30 | VaccDscaff29:29591240..29601268- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-308.41 | VaccDscaff26:30828379..30838346- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-316.28 | VaccDscaff21:31596223..31606319- | 603 | 3 | 200 | 21.30 | 4.76 |
VcFW2.2 | v.corymbosum_GDV_reftransV1_0004680 | 732 | / | 243 | 26.32 | 5.97 |
表3 越橘VcFWL/PLAC8家族的理化特征
Table 3 Physical and chemical characteristics of VcFWL/PLAC8 family in Vaccinium corymbosum
基因名称 Gene name | 染色体位置 Chromosome location | CDS/bp | 外显子数 Exon number | 大小/aa Size | 分子量/kD Molecular weight | 等电点 pI |
---|---|---|---|---|---|---|
gene-169.8 | VaccDscaff5:16978476..16983996- | 561 | 3 | 186 | 20.39 | 5.60 |
gene-244.19 | VaccDscaff8:24434249..24439769+ | 693 | 2 | 230 | 25.72 | 4.92 |
gene-228.26 | VaccDscaff10:22828768..22834442+ | 672 | 4 | 223 | 24.22 | 5.35 |
gene-180.23 | VaccDscaff1:18011712..18017230- | 777 | 3 | 258 | 27.84 | 8.12 |
gene-48.40 | VaccDscaff27:4876429..4880014+ | 741 | 3 | 246 | 26.38 | 5.40 |
gene-85.17 | VaccDscaff17:8569670..8572170+ | 657 | 2 | 218 | 23.42 | 8.54 |
gene-85.18 | VaccDscaff17:8572400..8573369+ | 396 | 2 | 131 | 14.60 | 6.27 |
gene-305.30 | VaccDscaff34:30578948..30582561- | 738 | 3 | 246 | 26.40 | 5.37 |
gene-296.30 | VaccDscaff29:29591240..29601268- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-308.41 | VaccDscaff26:30828379..30838346- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-316.28 | VaccDscaff21:31596223..31606319- | 603 | 3 | 200 | 21.30 | 4.76 |
VcFW2.2 | v.corymbosum_GDV_reftransV1_0004680 | 732 | / | 243 | 26.32 | 5.97 |
图4 越橘、番茄、拟南芥、大豆及玉米FWL/PLAC8蛋白的系统进化树
Fig. 4 Phylogenetic tree of FWL/PLAC8 proteins in Vaccinium corymbosum,Solanaceae lycopersicum,Arabidopsis thaliana,Glycine max and Zea mays
图5 VcFWL/PLAC8 基因亚家族成员在‘奥尼尔’与‘蓝雨’花芽膨大与果实发育进程中的相对表达
Fig. 5 Relative expression levels of VcFWL/PLAC8 subfamilies during Vaccinium corymbosum ‘O’Neal’and‘Bluerain’flower bud and fruit development * P < 0.05;** P < 0.01.
[1] | Alpert K B, Tanksley S D. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America, 93:5503-15507. |
[2] |
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. 2009. MEME SUITE:tools for motif discovery and searching. Nucleic Acids Research, 37(Supplement 2):W202-W208.
doi: 10.1093/nar/gkp335 URL |
[3] |
Bertin N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division,cell expansion and DNA endoreduplication. Annals of Botany, 95:439-447.
doi: 10.1093/aob/mci042 URL |
[4] |
Busov V B, Brunner A M, Strauss S H. 2008. Genes for control of plant stature and form. New Phytologist, 177:589-607.
doi: 10.1111/nph.2008.177.issue-3 URL |
[5] |
Cabreira-Cagliari C, Dias N D, Bohn B, Fagundes D G D, Margis-Pinheiro M, Bodanese-Zanettini M H, Cagliari A. 2018. Revising the PLAC8 gene family:from a central role in differentiation,proliferation,and apoptosis in mammals to a multifunctional role in plants. Genome, 61:857-865.
doi: 10.1139/gen-2018-0035 pmid: 30427722 |
[6] | Chen Man-man. 2019. Comparative analysis of anatomy and cell-cy.le related genes of southern highbush Vaccinium corymbosum[M. D. Dissertation]. Jinhua:Zhejiang Normal University. (in Chinese) |
陈曼曼. 2019. 南高丛蓝莓果实发育细胞学规律及相关基因的分离与表达分析[硕士论文]. 金华:浙江师范大学. | |
[7] |
Dernisky A K, Evans R C, Liburd O E, Mackenzie K. 2005. Characterization of early floral damage by cranberry tipworm(Dasineura oxycoccana Johnson)as a precursor to reduced fruit set in rabbiteye blueberry(Vaccinium ashei Reade). International Journal of Pest Management, 51:143-148.
doi: 10.1080/09670870500130980 URL |
[8] |
Die J V, Rowland L J. 2013. Advent of genomics in blueberry. Molecular Breeding, 32:493-504.
doi: 10.1007/s11032-013-9893-1 URL |
[9] |
Doebley J F, Gaut B S, Smith B D. 2006. The molecular genetics of crop domestication. Cell, 127:1309-1321.
pmid: 17190597 |
[10] |
Frary A, Nesbitt T C, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. 2000. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science, 289:85-88.
doi: 10.1126/science.289.5476.85 URL |
[11] |
Gonzalez N, Beemster G T, Inze D. 2009. David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Current Opinion in Plant Biology, 12:157-164.
doi: 10.1016/j.pbi.2008.11.003 URL |
[12] |
Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, van Daele T, De Milde L, Weigel D, Kamiya Y, Stitt M, Beemster G T S, Inze D. 2010. Increased leaf size:different means to an end. Plant Physiology, 153 : 1261-1279.
doi: 10.1104/pp.110.156018 URL |
[13] |
Grandillo S, Ku H M, Tanksley S D. 1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99:978-987.
doi: 10.1007/s001220051405 URL |
[14] |
Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, Duncan K E, Howard R J, Hou Z, Simmons C R. 2010. Cell Number Regulator1 affects plant and organ size in maize:implications for crop yield enhancement and heterosis. The Plant Cell, 22:1057-1073.
doi: 10.1105/tpc.109.073676 URL |
[15] |
Guo M, Simmons C R. 2011. Cell number counts-The fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Science, 181:1-7.
doi: 10.1016/j.plantsci.2011.03.010 URL |
[16] | He Chao-ying, Wang Li, Yan Li-xin, Li Qiao-ru, Yong Bin, Zhu Wei-wei. 2019. Evolutionary developmental mechanisms underlying the origin and diversification of the fruits. Scientia Sinica(Vitae), 49(4):301-319. (in Chinese) |
贺超英, 王丽, 严立新, 李巧茹, 雍斌, 朱韦韦. 2019. 果实起源与多样化的进化发育机制. 中国科学:生命科学, 49(4):301-319. | |
[17] |
Hussain Q, Shi J Q, Scheben A, Zhan J P, Wang X F, Liu G H, Yan G J, King G J, Edwards D, Wang H Z. 2020. Genetic and signaling pathways of dry fruit size: targets for genome editing based crop improvement. Plant Biotechnology Journal, 18(5) : 1124-1140.
doi: 10.1111/pbi.13318 pmid: 31850661 |
[18] |
Janssen B J, Thodey K, Schaffer R J, Alba R, Balakrishnan L, Bishop R, Bowen J H, Crowhurst R N, Gleave A P, Ledger S, McArtney S, Pichler F B. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology, 8:16.
doi: 10.1186/1471-2229-8-16 pmid: 18279528 |
[19] | Letunic L, Bork P. 2019. Interactive tree of life(iTOL)v4:recent updates and new developments. Nucleic Acids Research, 47(1):256-259. |
[20] |
Li X B, Jin L, Pan X H, Yang L, Guo W D. 2019. Proteins expression and metabolite profile insight into phenolic biosynthesis during highbush blueberry fruit maturation. Food Chemistry, 290:216-228.
doi: 10.1016/j.foodchem.2019.03.115 URL |
[21] | Li Ya-dong, Pei Jia-bo, Sun Hai-yue. 2018. Status and prospect of global blueberry industry. Journal of Jilin Agricultural University, 40(4):421-432. (in Chinese) |
李亚东, 裴嘉博, 孙海悦. 2018. 全球蓝莓产业发展现状及展望. 吉林农业大学学报, 40(4):421-432. | |
[22] | Libault M, Stacey G. 2010. Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes. Plant Signaling & Behavior, 5(10):1226-1228. |
[23] |
Libault M, Zhang X C, Govindarajulu M, Qiu J, Ong Y T, Brechenmacher L, Berg R H, Hurley-Sommer A, Taylor C G, Stacey G. 2010. A member of the highly conserved FWL(tomato FW2.2-like)gene family is essential for soybean nodule organogenesis. The Plant Journal, 62:852-864.
doi: 10.1111/j.1365-313X.2010.04201.x pmid: 20230508 |
[24] |
Lin Y, Wang Y H, Li B, Tan H, Li D N, Li L, Liu X, Han J C, Meng X J. 2018. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. Plant Physiology and Biochemistry, 127:561-572.
doi: 10.1016/j.plaphy.2018.04.034 URL |
[25] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4):402-408.
pmid: 11846609 |
[26] |
Monforte A J, Diaz A I, Caño-Delgado A, van der Knaap E. 2014. The genetic basis of fruit morphology in horticultural crops:lessons from tomato and melon. Journal of Experimental Botany, 65(16):4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021 |
[27] |
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. 2020. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theoretical and Applied Genetics, 133(1):1-21.
doi: 10.1007/s00122-019-03481-3 URL |
[28] |
Renaudin J P, Deluche C, Cheniclet C, Chevalier C, Frangne N. 2017. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. Journal of Experimental Botany, 68:1613-1623.
doi: 10.1093/jxb/erx058 URL |
[29] |
Rowland L J, Alkharouf N, Darwish O, Ogden E L, Polashock J J, Bassil N V, Main D. 2012. Generation and analysis of blueberry transcriptome sequences from leaves,developing fruit,and flower buds from cold acclimation through deacclimation. BMC Plant Biology, 12:46.
doi: 10.1186/1471-2229-12-46 pmid: 22471859 |
[30] |
Song W Y, Martinoia E, Lee J, Kim D, Kim D Y, Vogt E, Shim D, Choi K S, Hwang I, Lee Y. 2004. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiology, 135(2):1027-1039.
doi: 10.1104/pp.103.037739 URL |
[31] |
Su W B, ZhuY M, Zhang L, Yang X H, Gao Y S, Lin S Q. 2017. The cellular physiology of loquat(Eriobotrya japonica Lindl.)fruit with a focus on how cell division and cell expansion processes contribute to pome morphogenesis. Scientia Horticulturae, 224:142-149.
doi: 10.1016/j.scienta.2017.06.012 URL |
[32] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739.
doi: 10.1093/molbev/msr121 URL |
[33] |
Tanksley S D. 2004. The genetic,developmental,and molecular bases of fruit size and shape variation in tomato. The Plant Cell, 16:S181-S189.
doi: 10.1105/tpc.018119 URL |
[34] | Wang Yan. 2015. The roles of kinesins in exponential cell production and enlargement during early fruit development[Ph. D. Dissertation]. Beijing:Chinese Academy of Agricultural Science. (in Chinese) |
王燕. 2015. 黄瓜动蛋白参与果实发育早期细胞分裂和细胞膨大过程的研究[博士论文]. 北京:中国农业科学院. | |
[35] |
Xu J, Xiong W, Cao B, Yan T, Luo T, Fan T, Luo M. 2013a. Molecular characterization and functional analysis of“fruit-weight2.2-like”gene family in rice. Planta, 238:643-655.
doi: 10.1007/s00425-013-1916-y URL |
[36] | Xu Jing, Pan Yu-peng, Cheng Zhi-hui. 2020. Mechanism analysis of fruit size regulating genes CsSUN and CsLNG1 in cucumber. Acta Horticulturae Sinica, 47(1):53-62. (in Chinese) |
徐婧, 潘玉朋, 程智慧. 2020. 黄瓜CsSUN和CsLNG1调控果实大小的机理分析. 园艺学报, 47(1):53-62. | |
[37] |
Xu T F, Xiang J, Li F J, Li T M, Yu Y H, Wang Y J, Xu Y. 2013b. Screening proteins interacting with VpPR10.1 of Chinese wild grapevine using the yeast two-hybrid system. Acta Physiologiae Plantarum, 35:2355-2364.
doi: 10.1007/s11738-013-1269-y URL |
[38] |
Yang L, Cai K L, Huang H Y, Zhang Y H, Zong Y, Wang S, Shi J L, Li X P, Liao F L, Lu M, Guo W D. 2019. Comparative analysis of anatomy,gene expression of Vaccinium corymbosum cyclins and cyclin dependent kinases during the flower bud and fruit ontogeny. Scientia Horticulturae, 251:252-259.
doi: 10.1016/j.scienta.2019.03.028 |
[39] |
Yang L, Chen M M, Cai K L, Zhang L J, Zhu Y F, Ye Q, Lu M, Liao F L, Chen W R, Guo W D. 2018. VcFAS,VcSUN and VcOVATE orchestrated the fruit morphogenesis in southern highbush blueberry during the pre-anthesis and fruit development. Scientia Horticulturae, 240:109-115.
doi: 10.1016/j.scienta.2018.05.023 URL |
[40] | Yu Ke-da, Ye Mei-juan, Chen Wen-rong, Zhu Kai-li, Zhang Chang-jing, Guo Wei-dong. 2016. Methods for RNA isolation from blueberry tissues. Journal of Zhejiang Normal University(Natural Sciences), 39(1):66-70. (in Chinese) |
余柯达, 叶美娟, 陈文荣, 朱凯丽, 张常晶, 郭卫东. 2016. 蓝莓组织RNA提取方法的研究. 浙江师范大学学报(自然科学版), 39(1):66-70. | |
[41] |
Zifkin M, Jin A, Ozga J A, Zaharia L I, Schernthaner J P, Gesell A, Abrams S R, Kennedy J A, Constabel C P. 2012. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiology, 158:200-224.
doi: 10.1104/pp.111.180950 URL |
[1] | 刘金香, 王欢欢, 王洪苏, 周彦, 李中安, 周常勇. 橘蚜传播率不同的柑橘衰退病毒分离株CPm的表达特性和分子特征[J]. 园艺学报, 2021, 48(5): 1023-1030. |
[2] | 王佳淇,何莹钰,韦晓桐,李永强,杨 莉,陈文荣,廖芳蕾*,郭卫东*. LED补光组合对大棚越橘生长发育的影响[J]. 园艺学报, 2020, 47(6): 1183-1193. |
[3] | 其其格1,葛丽丽1,张启昌1,*,姜维庆2,吴榜华1. 越橘新品种‘北华1号’[J]. 园艺学报, 2020, 47(6): 1217-1218. |
[4] | 徐 婧,潘玉朋,程智慧*. 黄瓜CsSUN和CsLNG1调控果实大小的机理分析[J]. 园艺学报, 2020, 47(1): 53-62. |
[5] | 王日红,宋敏燕,王 然,杨英杰*. 山梨B-box基因PuBBX24表达特性及其在童期调控中的功能分析[J]. 园艺学报, 2019, 46(8): 1458-1472. |
[6] | 宋 杨,刘红弟,王海波,张红军*,刘凤之*. 越橘花青苷合成相关基因VcTTG1的克隆与功能鉴定[J]. 园艺学报, 2019, 46(7): 1270-1278. |
[7] | 乌凤章*,王贺新. 笃斯越橘响应低温和短光周期的蛋白质组分析[J]. 园艺学报, 2019, 46(2): 265-279. |
[8] | 张焕欣,李国权,杨惠栋,曹 娜,朱方红*. 甜瓜Dof家族全基因组鉴定与表达分析[J]. 园艺学报, 2019, 46(11): 2176-2187. |
[9] | 叶振风1,樊基胜2,贾 兵1,樊胜华2,朱立武1,*. 越橘早熟新品种‘徽王2号’[J]. 园艺学报, 2018, 45(S2): 2729-2730. |
[10] | 张清林,苏立遥,厉 雪,张舒婷,徐小萍,陈晓慧,王培育,李 蓉,张梓浩,陈裕坤,赖钟雄*,林玉玲*. 龙眼体胚发生早期miR166初级体的克隆与表达分析[J]. 园艺学报, 2018, 45(8): 1501-1512. |
[11] | 陈文荣,陈侨月,尤式备,余 颖,李永强,杨 莉,郭卫东*. 越橘VcLon2蛋白酶在转化烟草衰老中的作用[J]. 园艺学报, 2018, 45(7): 1261-1271. |
[12] | 方 茜,张园园,杨钰婷,黄苗苗,符巧丽,周慧莎,陈文荣,宗 宇*,郭卫东*. 越橘叶片转录组SSR发掘及其多态性研究[J]. 园艺学报, 2018, 45(7): 1359-1370. |
[13] | 吴志娟,方 茜,李永强,陈文荣,宗 宇*,郭卫东*. 越橘反转录转座子插入多态性分子标记开发及品种鉴别[J]. 园艺学报, 2018, 45(4): 753-763. |
[14] | 王春伟,王 燕*,张曦倩,董 田,温智浩,刘倩茹,李田丽,王怡惠,王赛风,张作刚,王建明,王美琴*. 拮抗细菌菌株YJ15的分离鉴定、发酵条件优化及对越橘灰霉病的防效[J]. 园艺学报, 2018, 45(10): 1905-1916. |
[15] | 王春伟,王 燕*,张曦倩,张作刚,王美琴,王建明. 越橘镰孢果腐病菌的生物学特性测定及防治药剂初步筛选 [J]. 园艺学报, 2017, 44(8): 1589-1598 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2012 《园艺学报》编辑部 京ICP备10030308号-2 国际联网备案号 11010802023439
编辑部地址: 北京市海淀区中关村南大街12号中国农业科学院蔬菜花卉研究所 邮编: 100081
电话: 010-82109523 E-Mail: yuanyixuebao@126.com
技术支持:北京玛格泰克科技发展有限公司