| [1] | 
																						 
											  Bender K W, Zipfel C. 2023. Paradigms of receptor kinase signaling in plants. Biochem J, 480 (12):835-854.  
											 												 
																									doi: 10.1042/BCJ20220372    
																																																	pmid: 37326386
																							 											 | 
										
																													
																						| [2] | 
																						 
											  Bi G Z, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke F L H, Chen S, Zhou J M. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell, 30 (7):1543-1561. 
											 											 | 
										
																													
																						| [3] | 
																						 
											  Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 2009. One for all:the receptor-associated kinase BAK1. Trends Plant Sci, 14 (10):535-541.  
											 												 
																									doi: 10.1016/j.tplants.2009.08.002    
																																																	pmid: 19748302
																							 											 | 
										
																													
																						| [4] | 
																						 
											  Dievart A, Gottin C, Perin C, Ranwez V, Chantret N. 2020. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol, 71:131-156.  
											 												 
																									doi: 10.1146/annurev-arplant-073019-025927    
																																																	pmid: 32186895
																							 											 | 
										
																													
																						| [5] | 
																						 
											  Gómez-Gómez L, Boller T. 2000. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in. Mol Cell, 5 (6):1003-1011.  
											 												 
																									doi: 10.1016/s1097-2765(00)80265-8    
																																																	pmid: 10911994
																							 											 | 
										
																													
																						| [6] | 
																						 
											  Hailemariam S, Liao C J, Mengiste T. 2024. Receptor-like cytoplasmic kinases:orchestrating plant cellular communication. Trends Plant Sci, 29 (10):1113-1130. 
											 											 | 
										
																													
																						| [7] | 
																						 
											  Han Zhifu, Song Wen, Wang Jizong, Tang Jiao, Sun Yadong, She Ji, Liu Tingting, Liu Peiyuan, Hu Zehan, Chai Jijie. 2016. Structural study of plant receptor kinases:review of the NSFC key program progress. Bulletin of National Natural Science Foundation of China, 30 (6):494-500. (in Chinese) 
											 											 | 
										
																													
																						 | 
																						 
											  韩志富, 宋文, 王继纵, 汤娇, 孙亚东, 佘继, 刘婷婷, 刘培源, 胡泽汗, 柴继杰. 2016. 植物受体激酶的结构生物学研究进展——国家自然科学基金重点项目阶段性研究成果综述. 中国科学基金, 30 (6):494-500. 
											 											 | 
										
																													
																						| [8] | 
																						 
											  Han Zhifu, Xiao Yu, Song Wen, Wang Jizong, Lin Guangzhong, Zhang Xiaoxiao, Chai Jijie. 2018. Structural and functional studies of plant receptor kinases. Chinese Science Bulletin, 63 (Z2):2921-2931. (in Chinese) 
											 											 | 
										
																													
																						 | 
																						 
											  韩志富, 肖裕, 宋文, 王继纵, 林光忠, 张晓晓, 柴继杰. 2018. 植物受体激酶的结构与功能研究进展. 科学通报, 63 (Z2):2921-2931. 
											 											 | 
										
																													
																						| [9] | 
																						 
											  Heese A, Hann D R, Gimenez-Ibanez S, Jones A M E, He K, Li J, Schroeder J I, Peck S C, Rathjen J P. 2007. The receptor-like kinase SERK3/BAK 1 is a central regulator of innate immunity in plants. P Natl Acad Sci USA, 104 (29):12217-12222. 
											 											 | 
										
																													
																						| [10] | 
																						 
											  Huang W R H, Braam C, Kretschmer C, Villanueva S L, Liu H, Ferik F, van der Burgh A M, Wu J, Zhang L, Nürnberger T, Wang Y, Seidl M F, Evangelisti E, Stuttmann J, Joosten M H A J. 2024. Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana. Nat Commun, 15 (1):4339.  
											 												 
																									doi: 10.1038/s41467-024-48313-1    
																																																	pmid: 38773116
																							 											 | 
										
																													
																						| [11] | 
																						 
											  Jones J D G, Staskawicz B J, Dangl J L. 2024. The plant immune system:From discovery to deployment. Cell, 187 (9):2095-2116. 
											 											 | 
										
																													
																						| [12] | 
																						 
											  Koller T, Bent AF. 2014. FLS2-BAK 1 extracellular domain interaction sites required for defense signaling activation. PLoS ONE, 9 (10):e111185. 
											 											 | 
										
																													
																						| [13] | 
																						 
											  Li J, Wen J, Lease K A, Doke J T, Tax F E, Walker J C. 2002. BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110 (2):213-222. 
											 											 | 
										
																													
																						| [14] | 
																						 
											  Liu M J, Yeh F J, Yvon R, Simpson K, Jordan S, Chambers J, Wu H M, Cheung A Y. 2024. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell, 187 (2):312-330. 
											 											 | 
										
																													
																						| [15] | 
																						 
											  Ranawaka B, An J, Lorenc M T, Jung H, Sulli M, Aprea G, Roden S, Llaca V, Hayashi S, Asadyar L, LeBlanc Z, Ahmed Z, Naim F, de Campos S B, Cooper T, de Felippes F F, Dong P, Zhong S, Garcia-Carpintero V, Orzaez D, Dudley K J, Bombarely A, Bally J, Winefield C, Giuliano G, Waterhouse P M. 2023. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology. Nat Plants, 9 (9):1558-1571. 
											 											 | 
										
																													
																						| [16] | 
																						 
											  Robatzek S, Bittel P, Chinchilla D, Kochner P, Felix G, Shiu S H, Boller T. 2007. Molecular identification and characterization of the tomato flagellin receptor LeFLS2,an orthologue of Arabidopsis FLS 2 exhibiting characteristically different perception specificities. Plant Mol Biol, 64 (5):539-547.  
											 												 
																									doi: 10.1007/s11103-007-9173-8    
																																																	pmid: 17530419
																							 											 | 
										
																													
																						| [17] | 
																						 
											  Sun Y D, Li L, Macho A P, Han Z F, Hu Z H, Zipfel C, Zhou J M, Chai J J. 2013. Structural basis for flg22-induced activation of the FLS2-BAK 1 immune complex. Science, 342 (6158):624-628. 
											 											 | 
										
																													
																						| [18] | 
																						 
											  Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, Tian Z, Chen H, Wang T, Yin W, Li B, Lai Z, Dinesh-Kumar S P, Baker B, Li F. 2024. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. Mol Plant, 17 (3):423-437. 
											 											 | 
										
																													
																						| [19] | 
																						 
											  Wang Y, Tyler B M, Wang Y C. 2019. Defense and counterdefense during plant-pathogenic oomycete infection. Annu Rev Microbiol, 73:667-696.  
											 												 
																									doi: 10.1146/annurev-micro-020518-120022    
																																																	pmid: 31226025
																							 											 | 
										
																													
																						| [20] | 
																						 
											  Wang Y, Xu Y P, Sun Y J, Wang H B, Qi J M, Wan B W, Ye W W, Lin Y C, Shao Y Y, Dong S M, Tyler B M, Wang Y C. 2018. Leucine-rich repeat receptor-like gene screen reveals that RXEG 1 regulates glycoside hydrolase 12 MAMP detection. Nat Commun, 9 (1):594.  
											 												 
																									doi: 10.1038/s41467-018-03010-8    
																																																	pmid: 29426870
																							 											 | 
										
																													
																						| [21] | 
																						 
											  Wei Y, Balaceanu A, Rufian J S, Segonzac C, Zhao A, Morcillo R J L, Macho A P. 2020. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nature Communications, 11 (1):3763.  
											 												 
																									doi: 10.1038/s41467-020-17573-y    
																																																	pmid: 32724132
																							 											 | 
										
																													
																						| [22] | 
																						 
											  Wu L, Xiao H, Zhao L, Cheng Q. 2022. CRISPR/Cas9-mediated generation of fls2 mutant in Nicotiana benthamiana for investigating the flagellin recognition spectrum of diverse FLS2 receptors. Plant Biotechnol J, 20 (10):1853-1855. 
											 											 | 
										
																													
																						| [23] | 
																						 
											  Xiang T T, Zong N, Zou Y, Wu Y, Zhang J, Xing W M, Li Y, Tang X Y, Zhu LH, Chai J J, Zhou J M. 2008. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol, 18 (1):74-80.  
											 												 
																									doi: 10.1016/j.cub.2007.12.020    
																																																	pmid: 18158241
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Xiao Hongju, Cheng Qiang. 2020. The progress in plant pattern recognition receptor FLS2. Journal of Nanjing Forestry University(Natural Sciences Edition), 44 (2):220-226. (in Chinese) 
											 											 | 
										
																													
																						 | 
																						 
											  肖红菊, 程强. 2020. 植物模式识别受体FLS2的研究进展. 南京林业大学学报(自然科学版), 44 (2):220-226.  
											 												 
																									doi: 10.3969/j.issn.1000-2006.201904056    
																																															 											 | 
										
																													
																						| [25] | 
																						 
											  Zhao Q, Bao J, Li H, Hu W, Kong Y, Zhong Y, Fu Q, Xu G, Liu F, Jiao X, Jin J, Ming Z. 2024. Structural and biochemical basis of FLS2-mediated signal activation and transduction in rice. Plant Commun, 5 (3):100785. 
											 											 | 
										
																													
																						| [26] | 
																						 
											  Zhou J M, Zhang Y. 2020. Plant immunity:danger perception and signaling. Cell, 181 (5):978-989. 
											 											 |