[1] |
Du T, Meng P, Huang J, Peng S, Xiong D. 2020. Fast photosynthesis measurements for phenotyping photosynthetic capacity of rice. Plant Methods,16:6.
|
[2] |
Fracasso A, Magnanini E, Marocco A, Amaducci S. 2017. Real-time determination of photosynthesis,transpiration,water-use efficiency and gene expression of two Sorghum bicolor(Moench)genotypes subjected to dry-down. Frontiers in Plant Science,8:932.
|
[3] |
Gosa S C, Lupo Y, Moshelion M. 2019. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping:new tools to support pre-breeding and plant stress physiology studies. Plant Science,282:49-59.
|
[4] |
Halperin O, Gebremedhin A, Wallach R, Moshelion M. 2017. High-throughput physiological phenotyping and screening system for the characterization of plant-environment interactions. The Plant Journal, 89 (4):839-850.
doi: 10.1111/tpj.13425
pmid: 27868265
|
[5] |
Li Y W, Wu X Y, Xu W Z, Sun Y D, Wang Y D, Li G J, Xu P. 2021. High-throughput physiology-based stress response phenotyping:advantages,applications and perspective in horticultural plants. Horticultural Plant Journal, 7 (3):181-187.
|
[6] |
Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona J M, Bota J. 2015. From leaf to whole-plant water use efficiency(WUE)in complex canopies:limitations of leaf WUE as a selection target. Crop Journal,3:220-228.
|
[7] |
Pandey A K, Jiang L, Moshelion M, Gosa S C, Xu P. 2021. Functional physiological phenotyping with functional mapping:a general framework to bridge the phenotype-genotype gap in plant physiology. iScience, 24 (8):102846.
|
[8] |
Qiu Rui-cheng, Wei Shuang, Zhang Man, Li Han, Sun Hong, Liu Gang, Li Min-zan. 2019. A review of crop phenomics measurement methods. China Agricultural Digest:Agricultural Engineering, 31 (1):15. (in Chinese)
|
|
仇瑞承, 魏爽, 张漫, 李寒, 孙红, 刘刚, 李民赞. 2019. 作物表型组学测量方法综述. 中国农业文摘:农业工程, 31 (1):15.
|
[9] |
Shan N, Ju W, Migliavacca M, Martini D, Guanter L, Chen J, Goulas Y, Zhang Y. 2019. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology,268:189-201.
|
[10] |
Shan N, Zhang Y, Chen J M, Ju W, Migliavacca M, Peñuelas J, Yang X, Zhang Z, Nelson J A, Goulas Y. 2021. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sensing of Environment,252:112134.
|
[11] |
Sinclair T R. 2012. Is transpiration efficiency a viable plant trait in breeding for crop improvement? Functional Plant Biology, 39 (5):359-365.
doi: 10.1071/FP11198
pmid: 32480788
|
[12] |
Steduto P, Hsiao T C, Fereres E, Raes D. 2012. Irrigation and drainage. Crop yield response to water. Rome:United Nations FAO Rome Press 49 (2):66.
|
[13] |
Shi Yi, Li Hai-peng. 2019. Population genomics methods:from classical statistics to supervised learning. China Sciences:Life Sciences, 49 (4):445-455. (in Chinese)
|
|
施怿, 李海鹏. 2019. 群体基因组学方法:从经典统计学到有监督学习. 中国科学:生命科学, 49 (4):445-455.
|
[14] |
Taylor H M, Jordan W R, Sinclair T R, Unger P W, Sneed T V, Jordan W R, Jensen R. 1983. Limitations to efficient water use in crop production. America: American Society of Agronomy Press.
|
[15] |
Vadez V, Kholova J, Medina S, Kakkera A, Anderberg H. 2014. Transpiration efficiency:new insights into an old story. Journal of Experimental Botany, 65 (21):6141-6153.
|
[16] |
Yang H, Shukla M K, Mao X, Kang S, Du T. 2019. Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Frontiers in Plant Science,10:160.
|
[17] |
Zur B, Jones J W. 1984. Diurnal changes in the instantaneous water use efficiency of a soybean crop. Agricultural and Forest Meteorology, 33 (1):41-51.
|