| [1] | Alonge M, Soyk S, Ramakrishnan S, Wang X G, Goodwin S, Sedlazeck F J, Lippman Z B, Schatz M C. 2019. RaGOO:fast and accurate reference-guided scaffolding of draft genomes, Genome Biology, 20:224. doi: 10.1186/s13059-019-1829-6    
																																					URL
 | 
																													
																						| [2] | Alonge M, Wang X G, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel T H, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo A L, Tieman D M, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez T R, Lemmon Z H, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie W R, Hutton S, van Eck J, Gillis J, Eshed Y, Sedlazeck F J, van der Knaap E, Schatz M C, Lippman Z B. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182 (1):145-161. doi: S0092-8674(20)30616-4    
																																																	pmid: 32553272
 | 
																													
																						| [3] | Chen H T, Zeng Y, Yang Y Z, Huang L L, Tang B L, Zhang H, Hao F, Liu W, Li Y H, Liu Y B, Zhang X S, Zhang R, Zhang Y S, Li Y X, Wang K, He H, Wang Z K, Fan G Y, Yang H, Bao A, Shang Z H, Chen J H, Wang W, Qiu Q. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 11:2494. doi: 10.1038/s41467-020-16338-x    
																																																	pmid: 32427850
 | 
																													
																						| [4] | Cheng H Y, Concepcion G T, Feng X W, Zhang H W, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18:170-175. doi: 10.1038/s41592-020-01056-5    
																																																	pmid: 33526886
 | 
																													
																						| [5] | Gao L, Gonda I, Sun H H, Ma Q Y, Bao K, Tieman D M, Burzynski-Chang E A, Fish T L, Stromberg K A, Sacks G L, Thannhauser T W, Foolad M R, Diez M J, Blanca J, Canizares J, Xu Y M, van der Knaap E, Huang S W, Klee H J, Giovannoni J J, Fei Z J. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature genetics, 51:1044-1051. doi: 10.1038/s41588-019-0410-2    
																																																	pmid: 31086351
 | 
																													
																						| [6] | Goel M, Sun H, Jiao W B, Schneeberger K. 2019. SyRI:finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20:277. doi: 10.1186/s13059-019-1911-0    
																																					URL
 | 
																													
																						| [7] | Hosmani P S, Flores-Gonzalez M, Geest H V D, Maumus F, Bakker L V, Schijlen E, Haarst J, Cordewener J, Sanchez-Perez G, Peters S, Fei Z J, Giovannoni J J, Mueller L A, Saha S. 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing,Hi-C proximity ligation and optical maps, BioRxiv: 767764. | 
																													
																						| [8] | Huang da W, Sherman B T, Lempicki R A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4:44-57. doi: 10.1038/nprot.2008.211    
																																																	pmid: 19131956
 | 
																													
																						| [9] | Li Tao, Liu Lei, Zhou Long-xi, Zong Yuan-yuan, Deng Xue-bin, Yan Zhe, Song Yan,Li Jun-ming. 2014. Characterizations and its application of wild tomato species Solanum pimpinellifolium. Acta Horticulturae Sinica, 41 (1):178-186. (in Chinese) | 
																													
																						|  | 李涛, 刘磊, 郑峥, 周龙溪, 宗园园, 邓学斌, 闫喆, 宋燕, 李君明. 2014. 醋栗番茄的研究与利用现状. 园艺学报, 41 (1):178-186. | 
																													
																						| [10] | Marçais G, Delcher A L, Phillippy A M, Coston R, Salzberg S L, Zimin A. 2018. MUMmer4:a fast and versatile genome alignment system, PLoS Comput Biol, 14:e1005944. doi: 10.1371/journal.pcbi.1005944    
																																					URL
 | 
																													
																						| [11] | Nattestad M, Schatz M C. 2016. Assemblytics:a web analytics tool for the detection of variants from an assembly. Bioinformatics, 32:3021-3023. doi: 10.1093/bioinformatics/btw369    
																																																	pmid: 27318204
 | 
																													
																						| [12] | Razali R, Bougouffa S, Morton M J L, Lightfoot D J, Alam I, Essack M, Arold S T, Kamau A A, Schmöckel S M, Pailles Y, Shahid M, Michell C T, Al-Babili S, Ho Y S, Tester M, Bajic V B, Negrão S. 2018. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Frontiers in Plant Science,Doi: 10.3389/fpls.2018.01402. doi: 10.3389/fpls.2018.01402    
																																					URL
 | 
																													
																						| [13] | Su X, Wang B A, Geng X L, Du Y F, Yang Q Q, Liang B, Meng G, Gao Q, Yang W C, Zhu Y F, Lin T. 2021. A high-continuity and annotated tomato reference genome. BMC Genomics, 22:898. doi: 10.1186/s12864-021-08212-x    
																																																	pmid: 34911432
 | 
																													
																						| [14] | Sun X P, Jiao C, Schwaninger H, Chao C T, Ma Y M, Duan N B, Khan A, Ban S, Xu K, Cheng L L, Zhong G Y, Fei Z J. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics, 52:1423-1432. doi: 10.1038/s41588-020-00723-9    
																																																	pmid: 33139952
 | 
																													
																						| [15] | Sun Y Q, Shang L G, Zhu Q H, Fan L J, Guo L B. 2021. Twenty years of plant genome sequencing:achievements and challenges. Trends in Plant Science, 27:391-401. doi: 10.1016/j.tplants.2021.10.006    
																																					URL
 | 
																													
																						| [16] | Tanksley S D. 2004. The genetic,developmental,and molecular bases of fruit size and shape variation in tomato. Plant Cell, 16:S181-S189. doi: 10.1105/tpc.018119    
																																					URL
 | 
																													
																						| [17] | The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485:635-641. doi: 10.1038/nature11119    
																																					URL
 | 
																													
																						| [18] | Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani P S, Saha S, Zhang J, Mainiero S, Strickler S R, Catala C, Martin G B, Mueller L A, Vrebalov J, Giovannoni J J, Wu S, Fei Z J. 2020. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications, 11:5817. doi: 10.1038/s41467-020-19682-0    
																																																	pmid: 33199703
 | 
																													
																						| [19] | Wenger A M, Peluso P, Rowell W J, Chang P C, Hall R J, Concepcion G T, Ebler J, Fungtammasan A, Kolesnikov A, Olson N D, Töpfer A, Alonge M, Mahmoud M, Qian Y, Chin C S, Phillippy A M, Schatz M C, Myers G, DePristo M A, Ruan J, Marschall T, Sedlazeck F J, Zook J M, Li H, Koren S, Carroll A, Rank D R, Hunkapiller M W. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome, Nature Biotechnology, 37:1155-1162. doi: 10.1038/s41587-019-0217-9    
																																																	pmid: 31406327
 | 
																													
																						| [20] | Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, Hamilton J P, Visser R G F, Bachem C W B, Robin Buell C, Zhang Z, Zhang C, Huang S W. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 52:1018-1023. doi: 10.1038/s41588-020-0699-x    
																																																	pmid: 32989320
 |