中国枣属植物亲缘关系的 RAPD 分析

李 莉,彭建营*,白瑞霞

(河北农业大学园艺学院,河北保定 071001)

摘 要: 采用 RAPD技术分析了原产我国的枣属 14个种、枣的 11个品种及 1个外类群的 DNA 多态 性。31个引物扩增出 921条谱带, 919条 (99.78%) 表现出多态性。基于 921个 RAPD标记, 利用 NTSYS 软件计算 Dice遗传相似系数,并建立 UPGMA聚类图,结果表明:在 0.26阈值处将供试材料分为 6类,不 支持前人根据单一性状对枣属属下组、系类群的划分;枣和酸枣、蜀枣和山枣宜分别作同一个种处理,同 时提出枣种下宜划分为两个亚种,并给出了新等级的学名;支持将枣种下传统划分的变种并入原变种。

关键词: 枣属; 亲缘关系; RAPD

中图分类号: S 665.1 文献标识码: A 文章编号: 0513-353X (2009) 04-0475-06

Studies on the Phylogenetic Relationships of Chinese Ziziphus by RAPD Techn ique

LILi, PENG Jian-ying, and BA I Rui-xia

(College of Horticulture, Agricultural University of Hebei, Baoding, Hebei 071001, China)

Abstract: The genomic DNA polymorphisms of 14 species of Chinese Ziziphus, 11 varieties of Z jujuba Mill and one outgroup were analyzed by using random amplified polymorphic DNA (RAPD). A total of 921 RAPD bands were amplified by 31 random primers, among which 919 (99.78%) were polymorphic. The data of 921 RAPD bands were used to generate Dice's similarity coefficients and to construct a dendrogram by means of UPGMA in the NTSYS pc program. It is concluded as follows: All samples were classified into six kinds at genetic similarity 0.26. The results can't support the classification of Sect and Ser on Ziziphus that based on single character Z jujuba Mill and Z acidojujuba C. Y. Cheng et M. J. Liu should be treated as one species In the same way, Z xiangchengensis Y. L. Chen et P. K. Chou and Z. montana W. W. Smith should be treated as one species Infraspecific classification of Z jujuba Mill should be classified into two subspecies, which were given new Latin names It is agreed that the varieties of Z jujuba should be merged into Z jujuba.

Key words: Ziziphus Mill; phylogenetic relationship; RAPD

我国是世界上枣属 (Ziziphus Mill) 植物较丰富的国家,有 18种,其中原产我国的有 14种,除 枣和酸枣广布全国各地外,其它主要分布于西南和华南地区 (陈艺林和周邦楷、1982: 曲泽洲和王 永蕙, 1993)。自本属建立以后的近两个半世纪, 各国学者虽然在资源调查和新种描述方面做了不少 工作,但由于缺乏对整属的综合性研究,枣属的属下系统划分还缺乏系统的研究。刘孟军 (1999) 对国内外 50多个标本或资料比较完整的种进行了详细考证分析,根据结果枝是否脱落及植体被毛与 否将枣属植物分为枣组 Sect Ziziphus和宿枝组 Sect Perdurans, 同时将后者据花序类型、子房和果 实被毛情况及内果皮厚薄等划分为聚伞花序系 Ser Cym osiflom 和聚伞圆锥花序系 Ser Thyrsiflom。按

收稿日期: 2009 - 01 - 15: 修回日期: 2009 - 03 - 24

基金项目: 国家自然科学基金项目 (30270927); 河北省自然科学基金项目 (C2004000363)

^{*} 通讯作者 Author for correspondence (E-mail: pjy@hebau.edu.cn)

照这种分类学处理,我国拥有枣属的所有组和系,其中枣和酸枣是惟一的以枝脱落的两个种,且仅在 我国分布。这种以枝的脱落性、植体被毛以及花序类型等为依据,对枣属的属下组的划分以及组下系 的划分是否自然尚未可知。作者利用 RAPD技术研究了原产我国的枣属 14个种、枣的 11个品种及 1 个外类群斯氏铜钱树,目的在于为解决它们的分类问题提供新的分子证据,同时为枣属植物种质资源 的保护和利用提供科学依据。

1 材料与方法

供试材料为原产我国的枣属 14个种、1个外类群斯氏铜钱树 (Paliurus spina-christiMill)及枣的 11个品种,详见表 1。于 2004年 8—10月采样,同一物种采集 3~10株,将嫩叶或幼茎采集后用硅 胶干燥法保存带回实验室,同一物种不同单株的材料混合后,参考高盐沉淀法 (李莉 等, 2007)提 取基因组 DNA。RAPD分析选用彭建营等 (2000a) 在枣品种中所用的能扩增出清晰谱带、多态性较 高的引物 (表 2)。RAPD - PCR反应体系和扩增条件参照彭建营等 (2000b)的方法。PCR扩增产物 经 1.4%琼脂糖凝胶 (含 EB 0.5 µg·mL¹) 电泳分离,利用紫外透射仪观察、照相。

表 1 供试材料

Table 1	The materials us	ni bea	the a	evner in en t

编号 Na	分类群 Taxa	来源 Source
1	毛脉枣 Z. pubinervis Rehd	广西靖西 Jingxi, Guangxi
2	滇枣 Z. incu rva Roxb	广西靖西 Jingxi, Guangxi
3	毛果枣 Z attopensis Pierre	云南勐仑 Menglun, Yunnan
4	毛叶枣 Z mauritiana Lam.	云南景洪 Jinghong, Yunnan
5	大果枣 Z maini Dode	云南平远街 Pingyuanjie, Yunnan
6	蜀枣 Z. xiangchengensis Y. L. Chen et P. K Chou	四川乡城 Xiangcheng, Sichuan
7	褐果枣 Z fung ii Merr	广西百色 Baise, Guangxi
8	皱枣 Z. nugosa Lam.	云南勐仑 Menglun, Yunnan
9	小果枣 Z oenoplia (L) Mill	广西靖西 Jingxi, Guangxi
10	山枣 Z montana W. W. Smith	云南大具 Daju, Yunnan
11	球枣 Z lauiMerr	海南三亚 Sanya, Hainan
12	无瓣枣 Z. apetala Hook f	云南西双版纳 Xishuangbanna, Yunnan
13	斯氏铜钱树 P. spina-christi Mill	北京 Beijing
14	串杆枣 Z jujuba Mill'Chuangan'	河北保定 Baoding, Hebei
15	酸枣 Z. acidojujuba C. Y. Cheng et M. J. Liu	河北沧州 Cangzhou, Hebei
16	河北龙枣 Z jujuba var tortuosa 'Hebei Longzao'	河北沧州 Cangzhou, Hebei
17	大荔龙枣 Z jujuba var tortuosa 'Dalilongzao '	河北沧州 Cangzhou, Hebei
18	河南龙枣 Z jujuba var tortuosa 'Henan Longzao'	河北沧州 Cangzhou, Hebei
19	无核小枣 Z jujuba var anucleatus 'Wuhexiaozao '	河北沧州 Cangzhou, Hebei
20	大叶无核 Z jujuba var anucleatus 'Dayewuhe '	河北沧州 Cangzhou, Hebei
21	柿蒂枣 Z jujuba var camosicalleis'Shidizao'	河北沧州 Cangzhou, Hebei
22	磨盘枣 Z jujuba var lageniformis 'Mopanzao'	河北沧州 Cangzhou, Hebei
23	葫芦长红 Z jujuba var lageniform is 'Huluchanghong'	河北沧州 Cangzhou, Hebei
24	茶壶枣 Z jujuba'Chahuzao'	河北沧州 Cangzhou, Hebei
25	胎里红 Z jujuba'Tailihong'	河北沧州 Cangzhou, Hebei
26	三变色 Z jujuba 'Sanbianse'	河北沧州 Cangzhou, Hebei

每个反应重复 2次。RAPD扩增产物按条带有或无分别赋值。有带记为 "1", 无带记为 "0"。 利用 NTSYSpc统计分析软件计算材料间的 Dice遗传相似系数 (GS), 按不加权成对算术平均法 (UPGMA) 建立系统聚类分支树状图。

2 结果与分析

2.1 RAPD 扩增多态性

选用 31个引物对供试的 26份材料进行 PCR扩增 (表 2), 共扩增出 921条清晰可用的条带, 分

子量大小在 0.3~4.0 kb之间。其中多态性条带 919条,多态带比率 (PPB)为 99.78%。不同引物 扩增带数变幅为 19~45条不等,平均每个引物扩增出 29.7条带。引物 S368的扩增结果见图 1。

表 2 31个 RAPD 引物在 26份材料上的扩增情况

Table 2	Am nlification	of 31	RA PD	nrimers on 26	experimented materials
Table 2	AIII PILICA CIOII	01 31	KAID	princes on 20	experimented materials

引物 Primer	引物序列 Sequence 5 - 3	总扩增带数 (多态带数) Total amplified bands (Polymorphic bands)	多态带比率 /% Percentage of polymorphic bands	引物 Primer	引物序列 Sequence 5 - 3	总扩增带数 (多态带数) Total amplified bands (Polymophic bands)	
S2	TGATCCCTGG	31 (31)	100	S301	CTGGGCACGA	30 (30)	100
S7	GGTGACGCAG	33 (33)	100	S303	TGGCGCAGTG	19 (19)	100
S8	GTCCACACGG	28 (28)	100	S304	CCGCTACCGA	29 (29)	100
S12	CCTTGACGCA	25 (25)	100	S305	CCTTTCCCTC	28 (28)	100
S22	TGCCGA GCTG	32 (30)	93. 75	S309	GGTCTGGTTG	24 (24)	100
S25	AGGGGTCTTG	32 (32)	100	S311	GGA GCCTCA G	37 (37)	100
S34	TCTGTGCTGG	34 (34)	100	S318	GACTA GGTGG	28 (28)	100
S40	GTTGCGATCC	36 (36)	100	S320	CCCA GCTA GA	39 (39)	100
S104	GGAA GTC GCC	38 (38)	100	S366	CACCTTTCCC	27 (27)	100
S105	AGTCGTCCCC	35 (35)	100	S368	GAACACTGGG	30 (30)	100
S107	CTGCATCGTG	25 (25)	100	S373	GGTTGTACCC	20 (20)	100
S108	GAAACACCCC	30 (30)	100	S375	CTCCTGCCAA	33 (33)	100
S119	CTGACCA GCC	23 (23)	100	S376	GA GCGTCGAA	26 (26)	100
S120	GGGA GA CATC	28 (28)	100	S377	CCCAGCTGTG	45 (45)	100
S174	TGACGGCGGT	31 (31)	100	S379	CACA GGC GGA	25 (25)	100
S179	AA TGCGGGA G	20 (20)	100	总计 Tota		921 (919)	99. 78

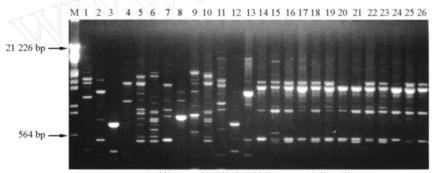


图 1 引物 S368扩增的枣属植物 RAPD产物图谱

M: DNA marker, 1~26: 样品 1~26见表 1。

Fig. 1 RAPD pattern amplified by primer S368 in Ziziphus

M: DNA marker, 1 - 26: Sample 1 - 26 see Table 1.

2.2 遗传关系分析

2.2.1 遗传相似性评价 根据 921个位点统计的数据,用 Dice系数表示 26份材料的遗传相似性。供试材料间的 GS在 0.16~0.98之间,平均值为 0.40,其中河北龙枣与河南龙枣的 GS值最大 (0.98),无瓣枣与毛脉枣和毛叶枣的 GS值最小 (0.16)。在枣属 14个种两两材料间, GS为 0.16~0.84,平均值为 0.27,最大者为蜀枣和山枣 (0.84),最小者为无瓣枣与毛脉枣和毛叶枣 (0.16)。枣和酸枣为 0.79。在枣的种下变种两两材料间, GS为 0.79~0.98,平均值为 0.84,最大者为河北龙枣和河南龙枣 (0.98),最小者为葫芦长红与大叶无核 (0.79) 及茶壶枣与河北龙枣 (0.79)。

2.2.2 聚类分析 从聚类图 (图 2) 可以看出,以 0.24的遗传相似系数为阈值,可将 26份材料分成两大类:小果枣、球枣和毛脉枣聚为一类,另外的枣属 11个种、枣的变种和外类群斯氏铜钱树聚

为第二类。这说明小果枣、球枣和毛脉枣的亲缘关系较近,它们与枣属其它种的关系相对较远。

在阈值 0.26处可将 26份材料分成 6类: 第 1类只包括毛脉枣 1个种,属聚伞花序系。第 2类包括小果枣和球枣 2个种,均属聚伞花序系。第 3类只包括滇枣 1个种,属聚伞花序系。第 4类包括 5个种、11个枣的品种,进一步可分为 3个亚类,第 1亚类包括大果枣、蜀枣、山枣 3个种,均属聚伞花序系,第 2亚类包括枣、酸枣 2个种及枣的变种,属于枣组,第 3亚类包括外类群斯氏铜钱树。第 5类包括 3个种,进一步分为 2个亚类,第 1亚类包括毛叶枣 1个种,属聚伞花序系;第 2亚类包括褐果枣、皱枣 2个种,均属聚伞圆锥花序系。第 6类包括毛果枣、无瓣枣 2个种,均属聚伞圆锥花序系。

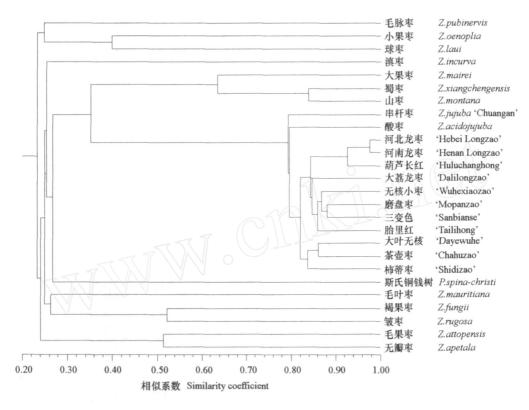


图 2 基于 RAPD 数据绘制的 26份供试材料间的聚类图

Fig. 2 Dendrogram of 26 accessions of Ziziphus based on RAPD markers

3 讨论

3.1 枣属属下分类系统的遗传关系

在刘孟军(1999)提出的枣属植物属下分类系统中,98%以上的种属于宿枝组,枣组只包括枣和酸枣。本研究中 RAPD分析将原产我国的枣属植物分为 6类,枣组 (枣和酸枣) 和宿枝组的大果枣、蜀枣和山枣分为其中的一类,其他的宿枝组,分别分为另外 5类,枣组和宿枝组没有截然分为两类;同属聚伞圆锥花序系的褐果枣、皱枣以及属于聚伞花序系的毛叶枣聚为一类,也说明宿枝组的两个系之间没有分开。枣属植物 ITS序列分析也得到类似的结果 (李学营,2005)。因此,对枣属植物的属下分类系统需进一步研究。

3.2 几个种的分类学地位

3.2.1 枣和酸枣 枣和酸枣的分类学地位是一个长期争议的问题,曾存在 4种观点:枣和酸枣为同

一个种;枣是酸枣的一个变种;酸枣是枣的一个变种 [即枣是原变种,酸枣为变种,这是 《中国植 物志 》(陈艺林和周邦楷 ,1982) 的分类处理]: 枣和酸枣是两个种 (刘孟军和诚静容 ,1994)。前人 根据枣的形态学特征、生物学特性、细胞学、同工酶学、花粉学、分子生物学、考古学、古文献等资 料,证明枣是由酸枣演化而来 (曲泽洲 等, 1986; 彭建营, 1991; 曲泽洲和王永蕙, 1993; 王秀伶 等,1999; 宋婉,1999, 彭建营 等,2000a),同时也证明了枣和酸枣非常近的亲缘关系,以至于在 含有多个供试枣品种和酸枣类型的聚类图中,枣和酸枣没有截然分开,而是不同枣品种和酸枣类型混 合聚在不同的类中,即每个类中既有枣品种,又有酸枣类型 (彭建营, 1991; 王秀伶 等, 1999; 李 瑞环, 2007); 另外, 以前的有关研究, 特别是关于细胞学、花粉学、同工酶学及分子生物学的研 究,由于选材大多只是枣和酸枣,个别有毛叶枣,使得种的分类地位的确定缺少枣和酸枣以外的其他 枣属植物种作参照比较,所得结果有一定的局限性。本研究选用了原产我国的全部枣属植物 14种和 1个外类群种为试材,进行了 RAPD分析和其他分析 (SRAP、ITS, 另文报道),根据 RAPD数据计 算的 Dice相似系数表明,枣和酸枣的遗传相似系数为 0.79,而整个供试枣属植物种的平均相似系数 为 0.27, 在种一级的水平上枣与酸枣的遗传变异是非常小的, 支持将枣和酸枣作为一个种处理, 这 一观点也得到了 SRAP数据和 ITS数据的支持,与《中国植物志》(陈艺林和周邦楷, 1982)处理相 同。鉴于枣和酸枣在果实大小、果核形状、干制后外果皮皱缩情况、繁殖方式、生境分布和用途等方 面存在着相关差异,作者认为枣和酸枣宜作同一个种内两个亚种处理,即原亚种枣,亚种酸枣,酸枣 是野生类型,枣是由酸枣进化而来的栽培类型。这种分类处理把 《中国植物志 》 酸枣的变种地位提 升为亚种,也不同于刘孟军等作两个种处理的观点 (刘孟军和诚静容,1994)。

枣的学名是 1768年由 Phillip Miller根据采自奥地利的模式标本定名的,为 Ziziphus ju juba Mill。 酸枣的学名是 1883年由 Bunge根据采自我国北部的模式标本定名的,为 Ziziphus vulgaris Lam. var spinosa Bunge。1909年 Schneider把酸枣归入 Z sativa Gaertn 。1934年胡先骕把酸枣归入 Z jujuba Mill 中, 酸枣学名为 Z jujuba Mill var spinosa (Bunge) Hu ex H. F. Chow (陈艺林和周邦楷, 1982)。1994年刘孟军给予酸枣新的学名 Z acidoju juba C. Y. Cheng et M. J. Liu (刘孟军和诚静容, 1994)。作者把枣和酸枣作同一个种内的两个亚种处理后,给予新学名为原亚种枣 Ziziphus ju juba Mill subsp. jujuba; 亚种酸枣 Ziziphus jujuba Mill subsp. spinosa (Bunge) J. Y. Peng, X. Y. Li et L. Li, 3.2.2 大果枣、蜀枣和山枣 从形态学特征看,大果枣、蜀枣和山枣极为相似,三者在地理分布上, 距离也较近,有交叉分布的现象 (陈艺林和周邦楷 , 1982)。RAPD分析结果也表明三者间亲缘关系 很近,支持 ITS序列和 psbA-tmH序列的聚类结果 (李学营,2005)。认为三者应该为起源于一个较 近的共同祖先,由生境 (分布)不同发生分化而分离开来。另外,蜀枣与山枣的遗传相似系数为 0.84, 大于枣与酸枣。所以本研究认为蜀枣和山枣应该归为一个种, 鉴于山枣种的确立是 1917年, 早于蜀枣 1979年,合并后应以山枣的学名为准。

3.2.3 毛叶枣、褐果枣和皱枣 毛叶枣、褐果枣和皱枣三者聚为一类,说明三者关系较近,褐果枣 和皱枣亲缘关系更近,符合其形态学分类,但与李学营 (2005)报道的 ITS序列结果不一致,这可能 与不同的分类水平有关,对于三者的分类学地位还需进一步的研究。

3.3 枣的种下划分

关于枣的种下划分,一般分为6个变种:枣(原变种)、无刺枣、龙爪枣、葫芦枣、宿萼枣、无 核枣 (曲泽洲和王永蕙, 1993; 陈艺林和周邦楷, 1982)。这 6个变种都是根据 1~2个表型性状差异 来划分的。彭建营等 (2002) 通过大量的野外调查、文献考证和标本分析,并借助 RAPD技术提出, 传统上根据个别枝、叶、果等的变异对枣变种的划分是不自然的,宜并入原变种,对枣种下可直接根 据品种间遗传关系,直接划分品种群。

龙枣从枝、叶、花、果形和生长结果习性考察,是长红枣品种的特殊变异。本研究表明河北龙枣

与河南龙枣亲缘关系最近,然后和葫芦长红聚在一起。而陕西大荔龙枣与前两种龙枣亲缘关系较远。结果认为,龙枣不只是一个品种,其起源是多元的。无核小枣和大叶无核枣的果核均退化成不完整的薄膜,但两者在枝叶形态和果实形状、大小方面都有较大差异。RAPD标记聚类显示两者的亲缘关系相对较远。同样,同为葫芦枣的变种,磨盘枣和葫芦长红枣未聚在一起。

本研究进一步支持将传统上根据个别变异划分的枣变种归入原变种。

References

Chen Yi-lin, Zhou Bang-kai 1982. Flora of China Vol 48 (1). Beijing. Science Press: 131 - 146. (in Chinese)

陈艺林,周邦楷. 1982 中国植物志. 第 48卷 (第一分册). 北京:科学出版社: 131 - 146.

Li Li, Peng Jian-ying, Bai Rui-xia 2007. Effect of different methods on Chinese jujube DNA extraction from leaves Journal of Fruit Science, 24 (3): 389 - 392 (in Chinese)

李 莉,彭建营,白瑞霞. 2007. 不同方法对枣叶片总 DNA提取效果的影响. 果树学报, 24 (3): 389 - 392.

Li Rui-huan 2007. Genetic relationship of jujube in China based on RAPD [M. D. Dissertation]. Yangling: Northwest A & F University (in Chinese)

李瑞环. 2007. 枣和酸枣遗传关系的 RAPD研究 [硕士论文]. 杨凌: 西北农林科技大学.

Li Xue-ying 2005. Molecular phylogeny of Ziziphus in China based on ITS and psbA-tmH sequence date [M. D. Dissertation]. Baoding: Agricultural University of Hebei (in Chinese)

李学营. 2005. 基于 iDNA的 ITS及 cpDNA的 p.sbA-tmH序列的中国枣属植物的系统发育 [硕士论文]: 保定:河北农业大学.

Liu Meng-jun, Cheng Jing-nong 1994. A taxonomic study on Chinese jujube and wild jujube Journal of Agricultural University of Hebei, 17 (4): 1-9. (in Chinese)

刘孟军, 诚静容. 1994. 枣和酸枣的分类学研究. 河北农业大学学报, 17 (4): 1-9.

Liu Meng-jun 1999. Advances in taxonomy study on the genus Ziziphus Acta Horticulturae Sinica, 26 (5): 302 - 308. (in Chinese) 刘孟军. 1999. 枣属植物分类学研究进展—文献综述. 园艺学报, 26 (5): 302 - 308.

Peng Jian-ying 1991. Studies on the pollen morphology of Chinese jujube (Ziziphus jujuba Mill) and wild jujube (Ziziphus spinosus Hu) [M. D. Dissertation]. Baoding: Agricultural University of Hebei (in Chinese)

彭建营. 1991. 枣、酸枣花粉形态的研究 [硕士论文]. 保定:河北农业大学.

Peng Jian-ying, Shu Huai-rui, Sun Zhong-xu, Peng Shi-qi 2000a RAPD analysis of gemplasm resources on Chinese date. Acta Horticulturae Sinica, 27 (3): 171 - 176. (in Chinese)

彭建营,束怀瑞,孙仲序,彭士琪. 2000a 中国枣种质资源的 RAPD分析. 园艺学报, 27 (3): 171 - 176.

Peng Jian-ying, Shu Huai-rui, Sun Zhong-xu, Peng Shi-qi 2000b. Establishment of RAPD technical system and relationship of several cultivars in Chinese date. Journal of Agricultural Biotechnology, 8 (2): 155 - 159. (in Chinese)

彭建营,束怀瑞,孙仲序,彭士琪. 2000b. 枣 RAPD技术体系建立与几个品种亲缘关系的研究. 农业生物技术学报,8 (2): 155-159.

Peng Jian-ying, Shu Huai-rui, Peng Shi-qi 2002. To address the problem of infraspecific classification of Ziziphus jujuba Mill using RAPD data Acta Phytotaxonomica Sinica, 40 (1): 89 - 94. (in Chinese)

彭建营,束怀瑞,彭士琪. 2002 用 RAPD技术探讨中国枣的种下划分. 植物分类学报, 40 (1): 89 - 94.

Qu Ze-zhou, Wang Yong-hui, L üZeng-ren, Yan Gui-jun 1986. Studies on the chromosome number of Chinese jujube. Acta Horticulturae Sinica, 13 (4): 232 - 236. (in Chinese)

曲泽洲,王永蕙,吕增仁,阎桂军. 1986 枣和酸枣染色体数目研究. 园艺学报,13 (4): 232-236

Qu Ze-zhou, Wang Yong-hui 1993. Fruit tree records of China Chinese jujube Beijing China Agricultural Press (in Chinese) 曲泽洲,王永蕙. 1993. 中国果树志·枣卷. 北京:中国农业出版社.

Song Wan 1999. Study on DNA fingerprinting of superior cultivars of Chinese date (Zizyphus jujuba Mill) [Ph D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese)

宋 婉. 1999. 中国枣优良品种 DNA指纹图谱的研究 [博士论文]. 北京:北京林业大学.

Wang Xiu-ling, Shao Jian-zhu, Zhang Xue-ying, Peng Shi-qi, Wang Yong-hui 1999. A study on the classification of jujube and wild jujube by peroxidase isozyme. Journal of Wuhan Botanical Research, 17 (4): 307 - 313. (in Chinese)

王秀伶, 邵建柱, 张学英, 彭士琪, 王永蕙. 1999. POD同工酶在酸枣、枣分类中的应用. 武汉植物学研究, 17 (4): 307-313.