辣椒抗根结线虫基因 Me3 的精细定位

许小艳 ^{1,2}, 刘 峰 ^{1,2}, 康厚祥 ¹, 张竹青 ², 邹学校 ^{2,*}, 谢丙炎 ^{1,*} (¹中国农业科学院蔬菜花卉研究所, 北京 100081; ²湖南省农业科学院蔬菜研究所, 长沙 410128)

摘 要: 以含 Me3 基因的抗根结线虫辣椒自交系 'HDA149' 为父本,感根结线虫辣椒自交系 '8214' 为母本,构建了一个 2 133 株的 F_2 作图群体。采用群体分离分析法(Bulked Segregant Analysis,BSA),构建抗、感病两个 DNA 池,对由两亲本筛选出来的 285 对引物进行扩增分析,发现引物 SSCP_B322 和 EPMS658 在抗、感池间具有稳定的多态性。继续用这两对引物对 F_2 单株进行扩增,以 JoinMap 3.0 软件分析发现 SSCP_B322 和 EPMS658 标记位于 Me3 基因两侧,遗传图距分别为 0.56 cM 和 1.33 cM。运用回交群体 BC₁ 和 F_3 群体验证实了这两个标记,可有效用于辣椒抗线虫分子标记辅助育种,也为图位克隆 Me3 基因奠定了基础。

关键词:辣椒;根结线虫; Me3基因;精细定位

中**图分类号:** S 641.3

文献标识码: A

文章编号: 0513-353X (2011) 02-0288-07

Fine Mapping of the Root-knot Nematode Resistance Gene Me3 in Pepper

XU Xiao-yan^{1,2}, LIU Feng^{1,2}, KANG Hou-xiang¹, ZHANG Zhu-qing², ZOU Xue-xiao^{2,*}, and XIE Bing-yan^{1,*}

(¹Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; ²Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha 410128, China)

Abstract: The pepper (*Capsicum annuum*) resistant inbred line 'HDA149' with *Me3* was used as male parent, and the susceptible inbred line '8214' was used as female parent in the study. Mapping population included 2 133 F₂ individuals. Bulked-segregant analysis with DNA pools, from susceptible or resistant F₂ progenies, was performed to identify markers linked to *Me3*. There were 285 pairs of primers with polymorphism between two parents, but just SSCP_B322 and EPMS658 were polymorphic between the two bulks. Then F₂ individuals were amplified with the two pairs of primers, recording data. Linkage analysis used JoinMap 3.0 software. The genetic distance of SSCP_B322 and EPMS658 was 0.56 cM and 1.33 cM respectively, and two markers were two sides of *Me3* gene. They had been verified in BC₁ group and F₃ families, which has been practically useful to marker-assisted selection in pepper breeding and *Me3* gene cloning.

Key words: pepper; Capsicum annuum L.; Meloidogyne incognita; Me3 gene; fine map

根结线虫(Meloidogyne spp.)是当前中国乃至世界最重要的农作物病原线虫之一,最常见的有南方根结线虫(M. incognita)、花生根结线虫(M. arenaria)、爪哇根结线虫(M. javanica)及北方

收稿日期: 2010 - 12 - 16; **修回日期:** 2011 - 01 - 21

基金项目: 国家大宗蔬菜产业技术体系项目; 公益性行业(农业)科研专项(2011303018)

^{*} 通信作者 Author for correspondence (E-mail: zou_xuexiao@163.com; xieby@mail.caas.net.cn)

根结线虫(*M. hapla*),其中以南方根结线虫对辣椒的为害最重,尤以长期重茬的保护地为重,而且根结线虫的侵染甚至是某些病害发生的先决条件(蒲金基等,2002)。由于缺乏高抗线虫的蔬菜品种,生产上主要采用甲基溴熏蒸土壤或化学杀线剂防治线虫,对蔬菜品质和环境均造成严重影响,导致温室土壤严重退化。因此,培育辣椒抗线虫品种是最为经济有效的方法。

辣椒野生资源中广泛存在抗线虫基因,Hare(1957)首次在 C. frutescens L. 'Santanka XS'上发现了单显性抗根结线虫基因 N. 目前在辣椒上已经发现并且命名的抗线虫基因至少有 10 个: N. Me1、Me2、Me3、Me4、Me5、Me7、Mech1、Mech2、Cami,这些基因的来源、抗谱范围、抗病机制、对温度的稳定性以及连锁情况等均不同。其中 Me3 为热稳定型,且抗谱较广,其研究利用价值较大(Bleve-Zacheo et al., 1998; Fery et al., 1998; Djian-Caporalino et al., 2001, 2007; Souza-Sobrinho et al., 2002; Chen et al., 2007)。Djian-Caporalino 等(2001, 2007)运用双单倍体和 RAPD、AFLP技术构建了对高温抗性稳定的辣椒抗线虫基因 Me3 和 Me4 的高密度遗传图谱,随后运用 3 个杂交组合'DH330×DLL'、'DLL×PM702'和'PM687×YW'的 $F_{2\sim3}$ 群体以 4 个共有的标记作为参照,将 6 个 Me 基因整合在一张图谱上,并将其定位在 P9 染色体上。尽管 Djian-Caporalino 找到了多个与 Me3 连锁的标记,但是与 Me3 连锁较近的标记大多为 AFLP 标记和 SSCP(Single-stand conformation polymorphism)标记,且遗传图距相对较远。因此,本研究旨在找到与 Me3 更紧密连锁的 SSR 标记,应用于分子标记辅助选择和 Me3 基因的图位分离,以加快辣椒抗线虫品种的选育及 Me3 基因的研究利用进程。

1 材料与方法

1.1 材料及抗性鉴定

以含 Me3 基因的抗病品种 'HDA149'为父本(来自中国农业科学院蔬菜花卉研究所),高感南方根结线虫的感病品种 '8214'为母本(来自湖南省农业科学院蔬菜研究所),二者杂交配制 F_2 群体,分别以两亲本为轮回亲本配制的回交群体及 F_3 群体为验证群体,以 F_1 群体为对照群体。以茄门甜椒(来自中国农业科学院蔬菜花卉研究所)为培养南方根结线虫的材料。本试验在中国农业科学院蔬菜花卉研究所病害组实验室进行。2009 年 2 月至 5 月进行群体抗性鉴定,7 月至 11 月进行重复鉴定。

从本课题组温室继代保存南方根结线虫的辣椒根结上挑出线虫卵块,于 24 ℃的恒温箱中孵化线虫后,接种于温室栽培的茄门甜椒上进行扩繁。

参照 Djian-Caporalino 等(1999,2007)的辣椒南方根结线虫鉴定方法对辣椒群体进行抗感病鉴定。辣椒种子催芽后播于育苗盘中,四叶期时移栽于 9 cm 的营养钵中。五叶期时在紧邻根系周围打两个 2 cm 深的小孔,每植株接种 600 条二龄南方根结线虫,整个生长期注意控水和控温(18 ~ 28 ℃)。接种 60 d 后对植株进行抗性鉴定。先将辣椒根洗净,放入 $0.1~{\rm g}\cdot {\rm L}^{-1}$ 的伊红黄中染色 30 min,卵块被染成红色,然后调查每根系的卵块数(egg masses,EM),EM \leq 5 时则为抗病单株;EM > 5 时则为感病单株;当 EM < 5,但根结数 \geq 8 时,则为性状不确定植株,记录数据。从 ${\rm F}_2$ 抗病单株中挑取 20 株既没卵块也没根结的健壮植株,移栽到 15 cm 的营养钵中,繁育 ${\rm F}_3$ 代。

1.2 基因组 DNA 提取及抗感池的构建

采用 CTAB 方法提取辣椒单株叶片总 DNA(李荣华等,2009)。紫外分光光度计测定 DNA 浓度和纯度,用 1%琼脂糖凝胶电泳检测其质量,将模板 DNA 浓度调整到工作液浓度 $25\sim50~\mathrm{ng}\cdot\mu\mathrm{L}^{-1}$ 。

根据 F_2 单株的抗性鉴定结果,随机选取表现极抗和极感单株各 10 株,将 DNA 等量混合组成抗病池和感病池。

1.3 PCR 扩增

共筛选了 525 对引物(Huang et al.,2001;Lee et al.,2004;Ogundiwin et al.,2005;Yi et al.,2006;Minamiyama et al.,2006;Nagy et al.,2007)。采用 20 μ L 反应体系: $10 \times PCR$ buffer(含 Mg^{2^+})2 μ L,dNTPs(5 mmol·L⁻¹)0.8 μ L,primer 1(10 μ mol·L⁻¹)0.8 μ L,primer 2(10 μ mol·L⁻¹)0.8 μ L,primer 2(10 μ mol·L⁻¹)0.8 μ L,模板 DNA($25 \sim 50$ ng· μ L⁻¹)1.5 μ L,Taq 酶(5 U· μ L⁻¹)0.2 μ L,Im ddH₂O 至 Im20 Im20 增程序:Im34 Im46 Im55 Im67 Im68 Im68 Im96 Im96 Im97 Im97 Im98 Im98 Im998 Im9998 Im998 Im998

将胶模夹在电泳槽上,用 1%的琼脂糖凝胶封底,室温放置 30 min,制作 8%的非变性聚丙烯酰胺凝胶,室温放置 1 h 使胶充分凝固,然后上样电泳,160 V 电泳 2 h,所用电泳缓冲液为 0.5 × TBE。电泳结束后,小心取下凝胶,硝酸银染色,观察结果并拍照(胡勇胜,2007;朱玉丽,2007)。

1.4 数据统计分析及标记验证

对 F_2 分离群体的抗感单株进行扩增电泳,分析电泳条带数据,a 表示条带与父本相同,b 表示条带与母本相同,h 表示条带是杂合型,u 表示条带不确定。利用 JoinMap 3.0 软件对条带数据进行连锁分析,计算标记与基因间的遗传图距,并按 Kosambi 系数将其转化为 Centi-Morgan(cM),构建抗线虫基因 Me3 基因的分子标记连锁图谱。运用筛选到的标记对 F_3 群体、回交群体 BC_1S '8214× HDA149'ב8214'和 BC_1H '8214× HDA149'בHDA149'进行扩增分析,验证标记的有效性。

2 结果与分析

2.1 辣椒接种结果的统计与抗线虫的遗传分析

作为对照的 '8214'、'HDA149'和 F_1 群体分别接种 30 株,接种 60 d 后,观察统计结果。'8214'全部表现感病,'HDA149'和 F_1 群体全部表现抗病。 F_2 群体接种 2 133 株,其中 1 499 株表现抗病,453 株表现感病,不能确定抗感性状的植株 181 株不进行统计分析。结果表明,在该群体中,抗感植株的分离比例为 3:1 (χ^2 , 3.35 < 3.84。),表明辣椒抗根结线虫基因 Me3 为单显性抗性基因,进一步证实了原有研究结果的正确性 (Djian-Caporalino et al., 2001)。用于验证的回交群体 BC_1S 接种59 株,其中 34 株表现抗病,21 株表现感病,4 株不能确定抗感性状,抗感单株比例为 1:1 (χ^2 , 3.07 < 3.84);回交群体 BC_1H 接种 47 株,全部表现抗病; F_3 群体接种 95 株,其中 82 株表现抗病,13 株表现感病(表 1)。

表 1 辣椒接种南方根结线虫 60 d 后的鉴定结果及分析

Table 1 The conclusion and analysis of Capsicum annuum progenies inoculated with M. incognita after sixty days

杂交组合 Cross	群体 Progeny	抗病植株数 Number of resistant plants	感病植株数 Number of susceptible plants	不确定的植株数 Number of uncertain plants	χ^2	P
8214 × HDA149	F_1	30	0	0	-	-
8214 × HDA149	F_2	1 499	453	181	3.35	> 0.05
8214 × HDA149	F_3	82	13	0	-	-
$F_1 \times 8214$	BC_1S	34	21	4	3.07	> 0.05
$F_1 \times HDA149$	BC_1H	47	0	0	-	-

2.2 亲本间多态性引物的筛选

共筛选了 520 对 SSR(Simple sequence repeat)引物,两对 SCAR(Sequence-characterized amplified regions) 引物,两对 SSCP 引物和 1 对 CAPS (Cleave amplified polymorphic sequence) 引物,其中 284 对 SSR 引物和 1 对 SSCP 引物在 'HDA149'和 '8214'两亲本间具有多态性,多态性比例为 54.29%。

2.3 Me3 基因分子标记连锁图谱的构建

将由亲本初次筛选到的引物对抗、感池进行扩增分析,重复 5 次,选取 3 次以上扩增均表现相同多态性的引物。结果显示,在抗病、感病池间仍表现有差异的引物有两对,SSCP_B322 和 EPMS658。进一步用这两对引物对 F_2 部分极抗、极感的单株进行扩增分析,结果显示与鉴定结果相一致,然后用这两对引物对全部 F_2 分离群体进行扩增分析(图 1,图 2)。分析电泳条带,用 JoinMap 3.0 软件对数据进行连锁分析,SSCP_B322 和 EPMS658 标记位于 Me3 基因两侧,遗传图距分别为 0.56 cM 和 1.33 cM(图 3)。

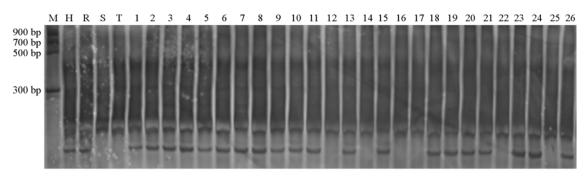


图 1 引物 SSCP_B322 在部分 F₂ 群体中的扩增图

M: Marker II; H: HDA149; R: 抗病池; S: 感病池; T: 8214; 1~26: F₂ 群体上的部分单株扩增。

Fig. 1 The PCR amplification pattern with primer SSCP_B322 in F₂ population M: Marker II; H: HDA149; R: Resistant pool; S: Sensitive pool; T: 8214; 1 - 26: The PCR amplification pattern in F₂ population.

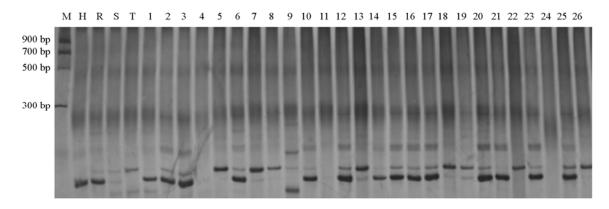


图 2 SSR 引物 EPMS658 在部分 F₂ 群体中的扩增图

M: Marker II; H: HDA149; R: 抗病池; S: 感病池; T: 8214; 1~26: F₂ 群体上的部分单株扩增。

Fig. 2 $\,$ The PCR amplification pattern with SSR primer EPMS658 in $\,$ F2 population

M: Marker II; H: HDA149; R: Resistant pool; S: Sensitive pool; T: 8214; 1-26: The PCR amplification pattern in F_2 population.



图 3 Me3 基因精细定位 Fig. 3 Fine mapping of Me3 gene

2.4 分子标记的验证

利用 SSCP_B322 和 EPMS658 标记对 F_3 群体、回交群体 BC₁S 和 BC₁H 进行扩增分析。SSCP_B322 对 F_3 群体的扩增结果显示,除了 1 株与鉴定结果不相符外,其它都与鉴定鉴定结果相一致; EPMS658 对 F_3 群体的扩增结果与鉴定结果完全符合。两对引物对回交群体 BC₁S 的扩增结果显示,除 1 株不能确定抗病性状的单株外,SSCP_B322 对它的扩增结果表现为抗病,而 EPMS658 对它的扩增结果表现为感病外,其它单株都与鉴定结果相一致; 两对引物对回交群体 BC₁H 的扩增结果与鉴定结果相一致,全部表现为抗病。验证结果表明: SSCP_B322 和 EPMS658 标记的鉴定效率较高,可以进行快速鉴定,有效用于辣椒抗线虫分子标记辅助选择育种。

3 讨论

根结线虫是极难防治的土传性病害,同时线虫的侵染又可加重枯萎病、根腐病等土传性真菌病害和部分细菌病害的发生。生产上常用的杀线虫药剂不仅费用昂贵而且严重污染环境,严重制约中国无公害蔬菜生产的可持续发展。

在作物野生资源中广泛存在抗线虫基因,如番茄、马铃薯、辣椒、大豆、棉花、禾谷类作物等多种植物的抗线虫基因已相继被发现或定位克隆。第 1 个被克隆的抗线虫基因是 $Hs1^{pro-l}$,来源于甜菜,抗甜菜胞囊线虫(Cai et al.,1997),随后番茄抗南方根结线虫 Mi 基因被克隆(Milligan et al.,1998)。目前,Mi 基因家族共有 9 个,原来的 Mi 抗性位点表示为 Mi-1,新发现的抗性基因分别为 Mi-2、Mi-3、Mi-4、Mi-5、Mi-6、Mi-7、Mi-8、Mi-9 (Ammiraju et al.,2003)。另一个来源于番茄的抗线虫基因 Hero 对马铃薯胞囊线虫具有广谱的抗性(Ernst et al.,2002)。在大豆上已经命名的抗胞囊线虫基因有 5 个,分别为 rhg1、rhg2、rhg3、Rhg4 和 rhg5。辣椒野生资源中也发现至少有 10 个抗线虫基因,其中在 PM217 和 PM687 的双单倍体群体中发现 5 个抗线虫基因($Me1 \sim Me5$)(Djian-Caporalino et al.,2001)。经过长期的栽培驯化,这些野生植物抗线虫基因已通过自然杂交渐渗到各类栽培品种中,形成了丰富的抗线虫种质资源,使利用抗线虫基因来控制线虫危害成为了可能。

在辣椒抗线虫基因家族中,Me1、Me3 为广谱抗性基因,能抗南方根结线虫、花生根结线虫、爪哇根结线虫等 3 种主要根结线虫,而Me2、Me4、Me5 分别抗一种主要的根结线虫,或仅仅抗一种线虫的某些株系(Castagnone-sereno et al.,1996;Bleve-Zacheo et al.,1998)。其中,Me3 为温度不敏感型,其抗性的表达发生在侵染的早期,幼虫与根接触时即刻产生过敏性坏死反应,超微结构观察证实 Me3 基因植株对线虫的侵染表现为侵染点附近的过敏性坏死,并在 42 $\mathbb C$ 的高温下也能保持完全活性;而Me1 类似于番茄中的Mi-1 基因,其抗性反应开始于幼虫在取食位点定居之后,反应较慢,主要发生在线虫侵染后巨细胞形成的过程中,高温条件下其抗性部分丧失,即为温敏型基因(Djian-Caporalino et al.,1999;Pegard et al.,2005)。因此,Me3 基因具有更广阔的应用前景。

从辣椒抗线虫相关基因的分子遗传图谱中可以看出,Me3 与 Me1,Me4,Me7,Mech1 和 Mech2 同位于辣椒 P9 染色体上一个 28 cM 的"抗线虫基因族区域",在此区域已定位 10 个标记,其中离 Me3 基因最近的 AFLP 标记为 0.9 cM(Kruijt et al.,2004; Djian-Caporalino et al.,2007)。本研究中采用 BSA 方法,在前人研究的基础上对 Me3 基因图谱进行加密,找到 2 个与 Me3 基因紧密连锁的分子标记 EPMS658 和 SSCP_B322,遗传图距分别为 0.56 cM、1.33 cM。SSCP_B322 在抗性单株上只扩增出一种带型,而 EPMS658 扩增出两种,可区分杂合子和显性纯合子。另外,还运用回交群体 BC₁S、BC₁H 和 F₃ 群体对 SSCP_B322 和 EPMS658 标记进行验证。验证结果显示: 扩增结果与抗性鉴定结果相符,证实两标记可有效、快速的应用于辣椒抗线虫分子标记辅助选择。同时,也为下一步图位克隆 Me3 基因奠定了基础。

References

- Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I. 2003. The heat-stable root-knot nematode resistance gene *Mi-9* from *Lycopersicon peruvianum* is localized on the short arm of chromosome 6. Theor Appl Genet, 106: 478 484.
- Bleve-Zacheo T, Bongiovanni M, Melillo M T, Castagnone-Sereno P. 1998. The pepper resistance genes *Mel* and *Me3* induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Science (Limerick), 133 (1): 79 90.
- Castagnone-sereno P, Bongiovanni M, Palloix A, Dalmasso A. 1996. Selection for Meloidogyne incognita virulence against resistance genes from tomato and pepper and specificity of the virulence/resistance determinants. EUR J Plant Pathol, 102: 585 590.
- Cai D, Kleine M, Kifle S, Harloff H J, Sandal N N, Marcker K A, Klein-Lankhorst R M, Salentijn E M J, Lange W, Stiekema W J, Wyss U, Grundler F M W, Jung C. 1997. Positional cloning of a gene for nematode resistance in sugar beet. Science, 275 (5301): 832 834.
- Castagnone-Sereno P, Bongiovanni M, Wajnberg E. 2007. Selection and parasite evolution: a reproductive fitness cost associated with virulence in the parthenogenetic nematode *Meloidogyne incognita*. Evolutionary Ecology, 21 (2): 259 270.
- Chen Rugang, Li Hanxia, Zhang Liying, Zhang Junhong, Xiao Jinghua, Ye Zhibiao. 2007. *CaMi*, a root-knot nematode resistance gene from hot pepper (*Capsium annuum* L.) confers nematode resistance in tomato. Plant Cell Reports, 26 (7): 895 905.
- de Souza-Sobrinho F, Maluf W R, Gomes L A A, Campos V P. 2002. Inheritance of resistance to *Meloidogyne incognita* race 2 in the hot pepper cultivar Carolina Cayenne (*Capsicum annuum* L.). Genet Mol Res, 1 (3): 271 279.
- Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubèze A, Palloix A, Dalmasso A, Abad P. 1999. Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in in pepper (*Capsicum annuum* L.) . Theor Appl Genet, 99 (3): 496 502.
- Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O'Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P. 2001. High-resolution genetic mapping of the pepper (*Capsicum annuum* L.) resistance loci *Me3* and *Me4* conferring heat-stable resistance to root-knot nematodes (*Meloidogyne* spp.) . Theor Appl Genet, 103 (4): 592 600.
- Djian-Caporalino C, Fazari A, Arguel M J, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P. 2007.

 Root-knot nematode (*Meloidogyne* spp.) *Me* resistance genes in pepper (*Capsicum annuum* L.) are clustered on the P9 chromosome. Theor Appl Genet, 114 (3): 473 486.
- Ernst K, Kumar A, Kriseleit D, Kloos D U, Phillips M S, Ganal M W. 2002. The broad-spectrum potato cyst nematode resistance gene (*Hero*) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant Journal, 31 (2): 127 136.
- Fery R L, Dukes P D Sr, Thies J A. 1998. 'Carolina Wonder' and 'Charleston Belle': Southern root-knot nematode-resistant bell peppers. HortScience, 33 (5): 900 902.
- Hare W W. 1957. Inheritance of resistance to root-knot nematodes in pepper. Phytopathology, 47: 455 459.
- Hu Yong-sheng, Mao Sheng-li, Wang Li-hao, Zhang Bao-xi, Liu Ming-yue. 2007. Optimizatim of SSR system in pepper. Journal of China Capsicum, 22: 17 19. (in Chinese)
 - 胡勇胜,毛胜利,王立浩,张宝玺,刘明月. 2007. 辣椒 SSR 反应体系的优化. 辣椒杂志, 22: 17-19.
- Hu Yong-sheng. 2007. Constructing the molecular linkage map of pepper and the QTL analysis of phytophthora blight[M. D. Dissertation].

- Changsha: Hunan Agricultural University. (in Chinese)
- 胡勇胜. 2007. 辣椒分子连锁图谱构建与抗疫病性状的 QTL 分析[硕士论文]. 长沙:湖南农业大学.
- Huang Sanwen, Zhang Baoxi, Dan M, Linda C, Yang Guimei, Guo Jiazhen. 2001. Development of pepper SSR markers from sequence databases. Euphytica, 117 (2): 163 167.
- Kruijt M, Brandwagt BF, de Wit PJ GM. 2004. Rearrangements in the *Cf-9* disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness. Genetics, 168: 1655 1663.
- Lee J M, Nahm S H, Kim Y M, Kim B D. 2004. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet, 108 (4): 619 627.
- Li Rong-hua, Xia Yan-shi, Liu Shun-zhi, Sun Li-li, Guo Pei-guo, Miao Shen-yu, Chen Jian-hui. 2009. CTAB-improved method of DNA extraction in plant. Research and Exploration in Laboratory, 28 (9): 14 16. (in Chinese)
 - 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 2009. 辣椒改进的 CTAB 提取植物 DNA 方法. 实验室研究与探索, 28 (9): 14-16.
- Milligan S B, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson V M. 1998. The root knot nematode resistance gene *Mi* from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 10 (8): 1307 1319.
- Minamiyama Y, Tsuro M, Hirai M. 2006. An SSR-based linkage map of Capsicum annuum. Molecular Breeding, 8 (2): 157 169.
- Nagy I, Stágel A, Sasvári Z, Röder M, Ganal M. 2007. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (*Capsicum annuum* L.). Genome, 50 (7): 668 688.
- Ogundiwin E A, Berke T F, Massoudi M, Black L L, Huestis G, Choi D, Lee S, Prince J P. 2005. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for *Phytophthora capsici* root-rot and foliar-blight diseases of pepper (*Capsicum annuum* L.). Genome, 48 (4): 698 711.
- Pu Jin-ji, Zeng Hui-cai, Liu Xiao-mei. 2002. Influence of root-knot nematode on the occurrence of phytophthora root rot of hot pepper and control effect of metalaxyl. Chinese Journal of Tropical Agriculture, 22 (6): 7 19. (in Chinese)
 - 蒲金基,曾会才,刘晓妹. 2002. 根结线虫对辣椒疫病发生及甲霜灵防效的影响. 热带农业科学, 22 (6): 7-19.
- Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C. 2005. Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in *Capsicum annuum*. Phytopathology, 95: 158 165.
- Portis E, Nagy I, Sasvari Z, Stágel A, Barchi L, Lanteri S. 2007. The design of *Capsicum* spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping. Plant Science, 172 (3): 640 648.
- Yi G, Lee J M, Lee S, Choi D, Kim B D. 2006. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet, 114 (1): 113 130.
- Zhu Yu-li. 2007. Studies on SSR molecular marker of wheat powdery mildew resistance genes *Pm2* and *Pm5e*[M. D. Dissertation]. Tai'an: Shandong Agricultural University. (in Chinese)
 - 朱玉丽. 2007. 小麦抗白粉病基因 Pm2 和 Pm5e 的 SSR 分子标记研究[硕士论文]. 泰安: 山东农业大学.