13 个阿月浑子品种的 RAPD 分析

(1)河北农业大学林学院,河北保定 071001; 2 河北农业大学园林与旅游学院,河北保定 071001; 3 河北农业大学生命科学学院,河北保定 071001)

摘 要: 为探明引进的阿月浑子品种间的亲缘关系,采用 RAPD 标记技术对引入的 12 个国外品种和'新疆优株'进行了分析。用筛选的 21 条 10 bp 随机引物进行 PCR 扩增可扩增出 137 个位点,其中多态位点 122 个,多态位点比率 89.05%;品种间遗传距离在 0. 2015~0.5163 之间,表明各品种间存在一定的遗传差异。UPGMA 聚类分析表明,13 个阿月浑子品种在遗传距离 0.40 处可划分为 3 个类群,第 1 类包括 'Kerman'、'Larnaka'、'M-38'、'M-P3'、'Ashoury'、'N'、'Joley'、'Aegina'、'Avidon'、'B'和'Peter' 11 个品种;第 2 类为'Xinjiang select tree'品种;第 3 类为'Mateur'品种。

关键词: 阿月浑子; 遗传多样性; RAPD 分析

中图分类号: S 664 文献标识码: A

文章编号: 0513-353X (2010) 03-0475-04

RAPD analysis of 13 Pistachio (*Pistacia vera*) Cultivars

WANG Chao¹, HAO Ai-li², BAI Zhi-ying³, and LU Bing-she^{2,*}

(¹ Forestry College, Hebei Agricultural University, Baoding, Hebei 071001, China; ² Landscape Architecture and Tourism College, Hebei Agricultural University, Baoding, Hebei 071001, China; ³ Life Science College, Hebei Agricultural University, Baoding, Hebei 071001, China)

Abstract: In order to analyze pistachio genetic relationship, random amplified polymorphic DNA (RAPD) was used to study the classification and identification of 13 pistachio (*Pistacia vera* L) cultivars which includs 12 exotic varities and one native selects of Xinjiang. Twenty-one 10 bp primers that selected from eighty arbitrary primers were applied for amplifying the pistachio DNA. Total 137 bands were produced, among which 122 bands (89.05%) were polymorphic. Genetic distances among the cultivars were estimated based on the amount of band sharing and ranged from 0.2015 – 0.5163, it is indicated that there are genetic differences among the cultivars. UPGMA cluster analysis showed that 13 pistachio varieties can be divided into three groups in the genetic distance of 0.40 level: The first category includes eleven varieties, the second category is the 'Xinjiang selection' and the third category is 'Mateur' varieties.

Key words: Pistacia vera L.; genetic diversity; RAPD

阿月浑子(Pistacia vera L.)在我国新疆有少量栽培(潘志刚和游应天,1994; 路丙社 等,2006),近年来河北、北京、陕西、甘肃、内蒙古等地均开始引种,但由于对引进品种缺乏统一管理,品种同名异物、同物异名和重复引进现象普遍存在。因此,对我国引入的阿月浑子进行品种鉴定、分类和遗传多样性研究势在必行。我国阿月浑子研究主要集中在生物学特性、繁殖技术和栽培生理等领

收稿日期: 2009 - 12 - 03; **修回日期:** 2010 - 01 - 31

基金项目:河北省林业局项目(0406260);国家林业局项目(2006-30)

^{*} 通信作者 Author for correspondence (E-mail: lubingshe@hebau.edu.cn)

域(路丙社等,2002,2004;周如久等,2006),有关其品种遗传多样性研究尚未见报道。本研究中利用RAPD分子标记技术(Williams et al.,1990;郭先锋和王连英,2007;冷月强等,2007;胡薇等,2008)对引入的12个阿月浑子品种和新疆选优株系进行了亲缘关系分析,以期为品种鉴定和分子标记图谱构建提供依据,为我国今后合理引进国外品种,避免盲目和重复引种提供有益的参考。

1 材料与方法

试验材料取自本课题组建立的阿月浑子种质资源圃(表 1)。随机选取生长状况基本一致植株,采集 20 片不同方位的新鲜嫩叶,双蒸水洗净后置于-70 ℃冰箱备用。按王超等(2009)的方法提取 DNA,分别用自动紫外分光光度计和 0.8%琼脂糖凝胶电泳检测 DNA 质量。

采用上海生工生物工程有限公司 S 系列引物。随机选取80个引物并从中筛选了21个多态性较高的(表2)用于RAPD分析。

以 13 个品种 DNA 为模板, 进行 RAPD-PCR 扩增反应。20 μ L PCR 反应体系为: $10 \times \text{buffer } 2.0 \mu$ L,150 μ mol·L⁻¹ dNTPs,Taq 酶 1.0 U,引物 0.5μ mol·L⁻¹,DNA 模板 20 ng,最后用 ddH₂O 水补足至 20μ L。PCR 扩增程序为: $94 \circ \mathbb{C}$ 预变性 $4 \circ \mathbb{C}$ min;然后按 $94 \circ \mathbb{C}$ 变性 $40 \circ \mathbb{C}$ s, $40 \circ \mathbb{C}$ 退火 $45 \circ \mathbb{C}$ 7 \mathbb{C} 延伸 $90 \circ \mathbb{C}$ 40 个循环:最后 $72 \circ \mathbb{C}$ 延伸 $7 \circ \mathbb{C}$ min。 $4 \circ \mathbb{C}$ 保存。

表 1 试验所用品种名称与来源

Table 1 Pisatchio cultivars and their origin used in the study

编号 No.	品种 Cultivars 来源 Origin		
1	Kerman	美国 USA	
2	Larnaka	塞浦路斯 Cyprus	
3	M-38	叙利亚 Syria	
4	Xinjiang select trees	中国新疆 Xinjiang	
5	Peter	美国 USA	
6	Joley	美国 USA	
7	Aegina	希腊 Greece	
8	В	希腊 Greece	
9	Avidon	以色列 Israel	
10	M-P ₃	西班牙 Spain	
11	Ashoury	叙利亚 Syria	
12	Mateur	突尼斯 Tunisia	
13	N	以色列 Israel	

表 2 RAPD 分析引物及其序列
Table 2 The 21 primers used for RAPD analysis and their sequence

引物	序列 5′→3′	引物	序列 5′→3′	引物	序列 5′→3′
Primer	Sequence 5'→3'	Primer	Sequence 5'→3'	Primer	Sequence 5'→3'
S1	GTTTCGCTCC	S17	AGGGAACGAG	S179	AATGCGGGAG
S2	TGATCCCTGG	S18	CCACAGCAGT	S2006	GGACGCCGT
S4	GGACTGGAGT	S42	GGACCCAACC	S2007	GGGTCGCATC
S5	TGCGCCCTTC	S45	TGAGCGGACA	S2080	AGGCGGCACA
S10	CTGCTGGGAC	S60	ACCCGGTCAC	S2081	CACTCCTGGT
S12	CCTTGACGCA	S82	GGCACTGAGG	S2082	ACGCCTGTAG
S15	GGAGGGTGTT	S177	GGTGGTGATG	S2084	CCCAAGCGAA

取 $10\,\mu\text{L}$ 扩增产物与 $2\,\mu\text{L}$ Loading Buffer 混匀,点样于 1.5%琼脂糖凝胶(含 $0.5\,\mu\text{g}\cdot\text{mL}^{-1}\,\text{GV}$)上样孔,在 $5\,\text{V}\cdot\text{cm}^{-1}$ 的 $1\times\text{TAE}$ 缓冲液中电泳 $1\sim1.5\,\text{h}$,在 Gel Doc XR 凝胶成像系统下检测,并拍照记录。同一引物扩增的产物,迁移率相同的谱带记为一个位点,有带记为'1',无带记为'0',作'0,1'矩阵图。运用 popgene32 软件计算 $13\,\text{个品种间的 Nei}$ 和 Li(1978)遗传距离及多态位点比率。运用 DPS v3.01 软件进行 UPGMA 聚类分析。

2 结果与分析

2.1 扩增产物的多态性分析

本研究筛选出了重复性好、谱带清晰的可用于阿月浑子 RPDA 分析的 21 个引物,共扩增出 137 条 DNA 谱带,其中 122 条具多态性,占总谱带数的 89.05%,表明阿月浑子品种间的多态性程度较高,与 Hormaza 等(1998)和 Salih 等(2006)等的研究结果基本一致。阿月浑子天然分布区域较窄(集中分布于中亚和西亚),而美国、地中海沿岸各国又有广泛的引种栽培,天然杂交加之人工选择,使得阿月浑子不同种质间发生基因交流,形成了遗传背景复杂和多态性较高栽培品种。

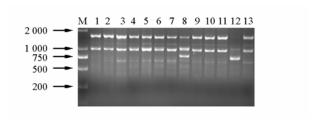
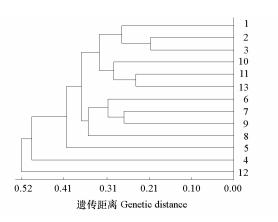

2.2 RAPD 特异性标记

图 1 为引物 S5 的扩增图谱。由图谱可以看出,在 13 个品种材料中,8 号材料(即'B'品种)和 12 号材料(即'Mateur'品种)在 750 bp 有特异条带,而其他品种则没有。对本试验其他引物扩增图谱的统计表明,'B'品种分别具有 S5-750 bp、S2006-2000 bp 特异条带;'Mateur'品种具有 S5-750 bp、S12-300 bp 特异条带;'Peter'品种具有 S12-500 bp 特异条带;'Aegina'品种具有 S2084-600 bp 特异条带;'Joley'品种特异缺失 S18-750 bp 条带,这些特异条带可作为重要的分子标记用于阿月浑子品种鉴定。

2.3 聚类分析

如图 2 所示, 13 个品种间的遗传距离为 0.2015~0.5163: 其中'Larnaka'与'M-38'间遗传距离最小,为 0.2015;'Mateur'与其他品种间遗传距离均较大,尤其与'M-38'的遗传距离最大,为 0.5163。在遗传距离 0.40 处做结合线,可将其划分为 3 类:第 1 类包括'Kerman'、'Larnaka'、'M-38'、'M-P3'、'Ashoury'、'N'、'Joley'、'Aegina'、'Avidon'、'B'和'Peter'11 个品种;第 2 类为'新疆选优';第 3 类为'Mateur'品种。


阿月浑子包括中亚类型和地中海类型,伊朗是中亚类型的集中分布区(路丙社等,2006)。 'Kerman'、'Joley'和'Peter'品种是美国从伊朗引种的实生播种苗选育而来的优

品种序号见表 1。
Fig. 1 Banding pattern of amplified by the S5 primer

图 1 引物 S5 的 RAPD 扩增谱带

Banding pattern of amplified by the S5 primer
 M: DNA Marke2000; Refer to Table 1
 for the No. of cultivar.

图 2 基于 RAPD 标记的 13 个品种 UPGMA 树系图 品种序号见表 1。

Fig. 3 UPGMA dendrogram of the thirteen Pistachio cultivars based on RAPD marker

Refer to Table 1 for the No. of cultivar.

良品种,属于中亚类型(Whitehouse, 1957)。引自叙利亚、希腊和塞浦路斯等国家的 8 个品种与引自美国的 'Kerman'、'Joley'和 'Peter' 聚为第 1 类,说明这些品种间遗传距离较小,有极高的遗传相似性,应属于中亚品种类型。第 3 类的 'Mateur'品种引自突尼斯(濒临地中海),与其他参试品种遗传距离较远,说明其属于地中海类型。新疆阿月浑子引自伊朗,属于中亚类型(魏玉君和王联营,

2004),但其与其他中亚类型遗传距离较远,单独聚为一类,可能是在进化过程中形成了独立的基因型。 上述结果表明,在我国目前引进的品种中,中亚类型相对丰富,而地中海类型非常缺乏。

本研究只选择了本课题种质资源圃种植的 13 个品种,伴随今后更多的阿月浑子优良品种选育及引进,我们将扩大种质资源的研究数量及范围,并结合其他分子标记手段做更进一步的研究。

References

Guo Xian-feng, Wang Lian-ying. 2007. Genetic relationship of partial peony germplasm resources with RAPD markers. Acta Horticulturae Sinica, 34(5): 1321 - 1326. (in Chinese)

郭先锋,王莲英. 2007. 部分芍药种质资源的 RAPD 分析. 园艺学报,34(5):1321-1326.

Hu Wei, Huang Ru-zhu, Pan Xiao-hua, Li Jin-feng, Sun Duan. 2008. RAPD analysis of thirty-eight cymbidium ensifolium cultivars. Acta Horticulturae Sinica, 35 (2): 289 - 294. (in Chinese)

胡 薇,黄儒珠,潘晓华,李锦凤,孙 端. 2008. 建兰 38 个品种的 RAPD 分析. 园艺学报, 35 (2): 289 - 294.

Hormaza J I, Pinney K, Polito V S. 1998. Genetic diversity of pistachio germplasm based on randomly amplified polymorphic DNA (RAPD) markers. Economic Botany, 52 (1): 78 - 87.

Lu Bing-she, Liu Zhong-hua, Dong Yuan. 2006. Pistachio introduction research. Beijing: China Forestry Publishing House: 1 - 5. (in Chinese) 路丙社,刘忠华,董源 2006. 阿月浑子引种研究. 北京:中国林业出版社: 1 - 5.

Lu Bing-she, Bai Zhi-ying, Sun Hao-yuan, Li Hui-ping, Liu Zhong-hua, Dong Yuan . 2004. Effects of soil water content level on net photosynthetic rate and chlorophyll fluorescence parameters in pistachio leaves. Acta Horticulture Sinica, 31 (6): 727 - 731. (in Chinese)

路丙社,白志英,孙浩元,李会平,刘忠华,董 源. 2004. 土壤含水量对阿月浑子叶片净光合速率及叶绿素荧光参数的影响. 园艺学报,31(6):727-731.

Lu Bing-she, Bai Zhi-ying, Liang Hai-yong, Wu Jing-min, Dong Yuan. 2002. A study on photoinhibition of photosynthesis in pistachio (*Pistacia vera* L.) leaves. Acta Horticulture Sinica, 29 (4): 313 – 316. (in Chinese)

路丙社,白志英,梁海永,吴京民,董 源. 2002. 阿月浑子叶片光合作用的光抑制. 园艺学报,29(4): 313 - 316.

Leng Yue-qiang, Hou Xi-lin, Shi Gong-jun. The RAPD markers linked to downy mildew resistant gene in Non-head in Chinese cabbage (*Brassica campestris* ssp *chinensis* Makino) Acta Horticulturae Sinica, 34 (3): 763 – 766. (in Chinese)

冷月强,侯喜林,史公军. 2007. 白菜抗霜霉病基因的 RAPD 标记. 园艺学报, 34 (3): 763-766.

潘志刚,游应天. 1994. 中国主要外来树种引种栽培. 北京:中国科学技术出版社: 523-525.

Salih K, Hakan O, Bekir E A, Izzet A, Halit S A, Sonay Koyuncu. 2006. Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: Comparison of AFLP,ISSR and RAPD markers. J Amer Soc Hort Sci, 131(4): 522 - 529.

Whitehouse W E. 1957. The pistachio Nuta-a new crop for the western United States. Econ Botany, 11 (4): 281 - 321.

Wang Chao, Hao Ai-li, Li Xu-xin, Feng Xian-bin, Lu Bing-she. 2009 Research on methods for genomic DNA extraction from *Pistacia vera* L.//Xi Rong-ting, Liu Meng-jun, Wang Wen-jing. Dried fruits research (6). Beijing: China Agricultural Science and Technology Press: 165 - 169. (in Chinese)

王 超,郝爱丽,李旭新,冯献宾,路丙社. 2009. 一种适用于阿月浑子基因组 DNA 提取的方法//都荣庭,刘孟军,王文江. 于果研究进

展(6). 北京: 中国农业科学技术出版社: 165-169.

Wei Yu-jun, Wang Lian-ying. 2004 .Pistachio production status and prospects of introduction. Journal of Henan Forestry Science and Technology. 24(2): 32 - 33. (in Chinese)

魏玉君, 王联营. 2004.阿月浑子生产现状及引种前景. 河南林业科技. 24(2): 32-33.

Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic makers. Nucleic Acids Res, 18 (22): 6531 - 6535.

ZHOU Ru-jiu, Ni Zhi-yun, Lu Bing-she, Bai Zhi-ying, Li Xian-ming. 2006. Inflorescence growth and flowering phenology of pistachio. Acta Bot Boreal-Occident Sin, 26(8): 1579 - 1583. (in Chinese)

周如久,倪志云,路丙社,白志英,李献明. 2006. 阿月浑子花序生长和花期物候学研究. 西北植物学报, 26(8): 1579-1583.