https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

园艺学报 ›› 2014, Vol. 41 ›› Issue (2): 227-239.

• 果树 • 上一篇    下一篇

基于ITS和matK序列探讨新疆野苹果与中国苹果的系统演化关系

朱元娣1,曹敏格1,许 正2,王 昆3,张 文1,*   

  1. (1中国农业大学农学与生物技术学院,北京 100193;2新疆伊犁州林业科学院,新疆伊宁 835000;3中国农业科学院果树研究所,辽宁兴城 125100)
  • 收稿日期:2013-09-10 出版日期:2014-02-25 发布日期:2014-02-25

Phylogenetic Relationship Between Xinjiang Wild Apple(Malus sieversii Roem.)and Chinese Apple(Malus × domestica subsp. chinesnsis)Based on ITS and matK Sequences

ZHU Yuan-di1,CAO Min-ge1,XU Zheng2,WANG Kun3,and ZHANG Wen1,*   

  1. (1College of Agriculture and Biotechnology,China Agricultural University,Beijing 100193,China;2Xinjing Academy of Forestry Science in Yili,Yining,Xinjiang 835000,China;3Research Institute of Pomology,China Academy of Agricultural Sciences,Xingcheng,Liaoning 125100,China)
  • Received:2013-09-10 Online:2014-02-25 Published:2014-02-25

摘要: 以新疆地区不同居群的52份新疆野苹果[Malus sieversii(Ledeb.)Roem.]、9份中国苹果品种(Malus × domestica subsp. chinensis Li.)、1份森林苹果(M. sylvestris Miller)种质为试材,进行核糖体DNA内转录间隔区(ribosomal DNA internal transcribed spacers,ITS)和叶绿体成熟酶K(matK)基因的测序分析。从GenBank中获取了11个苹果栽培品种、14个塞威士苹果、26个苹果属其它种及1个外类群欧洲梨(Pyrus communis)的ITS及matK序列。利用MEGA(ver. 4.0)计算不同序列间的碱基组成频率、简约信息位点数、转换/颠换比率、序列间成对距离,以最大简约法与邻接法进行系统发育分析。结果表明,采集的“新疆野苹果”与“中国苹果”的ITS序列长度在589 ~ 594 bp,含有148个简约信息位点,转换/颠换比率(R)为1.029;MatK序列长度为1 451 ~ 1 461 bp,没有复制子Ⅱ序列,含有16个简约信息位点,转换/颠换为1.442。ITS分析将中国苹果、新疆野苹果(来自中国新疆)和塞威士苹果(来自GenBank)聚类于一个大的发育枝内,新疆野苹果5个居群的系统演化按新源、巩留、霍城和塔城的先后次序发生。MatK序列的系统发育分析将中国苹果和新疆野苹果聚类在一个大的发育枝内,但自展支持率低。由此说明,中国苹果由新疆野苹果驯化而来。matK不适于栽培苹果种内的系统发育分析。

关键词: 苹果, 新疆野生苹果, 中国苹果, ITS, matK, 系统发育分析

Abstract: Revealing the phylogenetic relationship between Xinjiang wild apple(Malus sieversii Roem.)and Chinese apple(Malus × domestica subsp. chinensis Li.)at molecular level would help identify the origin and taxonomy of Chinese apple,and provide theoretical basis for preserving and utilizing wild  apple resources. The sequence of ribosomal DNA internal transcribed spacers(ITS)and the coding region of the matK gene were sequenced from 52 accessions of Xinjiang wild apple,nine cultivars of Chinese apple,and one accession of M. sylvestris. Sequences of ITS and matK of 11 cultivars of Malus × domestica,14 accessions of Malus sieversii,26 of other Malus spp.,and one of Pyrus communis were retrieved from GenBank. The MEGA software(ver. 4.0)was used to analyze the divergences,variable sites,parsim-informative sites,the ratio of transition to transversion(R)and pairwise distances. The phylogenetic analysis was conducted by Maximum parsimony(MP)and Neighbor-joining(NJ)methods. The results showed that the size of ITS sequences of Xinjiang wild apple and Chinese apple ranged from 589 bp to 594 bp containing 148 parsim-informative sites with R of 1.029,whereas their matK sequences varied from 1 451 bp to 1 461 bp encompassing 16 parsim-informative sites with R of 1.442. Duplication Ⅱ was not found in the Xinjiang wild apple and Chinese apple accessions. Phylogenetic trees of ITS showed that Chinese apple,the Xinjiang wild apple(from Xinjiang,China),and M. sieversii(from GenBank)fallen into a large clade. The systematic evolution of Xinjiang wild apple appeared to occur in a geographical order of Xinyuan,Gongliu,Huocheng,and Tacheng. The matK cladograms grouped Chinese apple and the Xinjiang wild apple into one large clade with weak bootstrap support. These results indicated that Chinese apple was domesticated from Xinjiang wild apple and the matK gene was not applicable for phylogenetic analysis in intra-species of Malus × domestica. apple resources. The sequence of ribosomal DNA internal transcribed spacers(ITS)and the coding region of the matK gene were sequenced from 52 accessions of Xinjiang wild apple,nine cultivars of Chinese apple,and one accession of M. sylvestris. Sequences of ITS and matK of 11 cultivars of Malus × domestica,14 accessions of Malus sieversii,26 of other Malus spp.,and one of Pyrus communis were retrieved from GenBank. The MEGA software(ver. 4.0)was used to analyze the divergences,variable sites,parsim-informative sites,the ratio of transition to transversion(R)and pairwise distances. The phylogenetic analysis was conducted by Maximum parsimony(MP)and Neighbor-joining(NJ)methods. The results showed that the size of ITS sequences of Xinjiang wild apple and Chinese apple ranged from 589 bp to 594 bp containing 148 parsim-informative sites with R of 1.029,whereas their matK sequences varied from 1 451 bp to 1 461 bp encompassing 16 parsim-informative sites with R of 1.442. Duplication Ⅱ was not found in the Xinjiang wild apple and Chinese apple accessions. Phylogenetic trees of ITS showed that Chinese apple,the Xinjiang wild apple(from Xinjiang,China),and M. sieversii(from GenBank)fallen into a large clade. The systematic evolution of Xinjiang wild apple appeared to occur in a geographical order of Xinyuan,Gongliu,Huocheng,and Tacheng. The matK cladograms grouped Chinese apple and the Xinjiang wild apple into one large clade with weak bootstrap support. These results indicated that Chinese apple was domesticated from Xinjiang wild apple and the matK gene was not applicable for phylogenetic analysis in intra-species of Malus × domestica.

Key words: Malus ×, domestica Borkh., Malus sieversii(Ledeb.)Roem., Malus ×, domestica subsp. chinensis Li Y. N., ITS, matK, phylogenetic analysis

中图分类号: